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This candle is for you, the beginner.
Turn it into a flame.

What comes from the heart, goes to the heart.

Samuel Taylor Coleridge, Table Talk
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FOREWORD

I am very pleased to have this new book in the Aho/Ullman series Princi-
ples of Computer Science. I see this book as a major step toward making
computer science theory accessible to the wide range of students who need
to know the subject. It covers a good segment of the classical material on
data structures and algorithms, but it does so in a spritely way that involves
and challenges the student at every turn of the page. I think you will be
amused and challenged by the original examples and applications of these
ideas.

The book concludes with an accessible introduction to the modern ideas
in complexity theory. These include cryptography, complexity classes re-
lated to randomness, and interactive proofs. I hope the reader will enjoy
and profit from this book as I did.

Jeffrey D. Ullman
Stanford, California
September 1991



PREFACE

When I hear somebody sigh, 'Life is hard,'
I am always tempted to ask, 'Compared to what?'

Sydney J. Harris, Majority of One

Designing efficient programs requires some way to compare different meth-
ods of doing the same thing; it's hard to tell if something is good without
comparing it to something else. One way to compare two programs solv-
ing the same problem is to run them on some representative inputs. But
this only tells us how they behave on those inputs, leaving a number of
questions unanswered. How will the programs do if run on other inputs?
What is their worst performance? Their best performance? Their average
performance? Which program is best?

These questions then lead to general questions about program design.
What happens to a program's efficiency if we modify the program? What
changes give the most improvement? What principles help in designing
good programs in the first place? What is the best possible program for
solving the problem? Is there a best program for the problem? Does every
problem have a good program? Finally, how can we design the best pro-
gram without wasting time writing, debugging, and running many duds?
Analysis helps us answer all of these questions.

Well then, with all this talk of programs, what's an algorithm? An algo-
rithm is a computational recipe: a general way to do something that is so
specific that everyone-including our literal-minded friends, computers-
can follow it. Every program is a particular instance of some algorithm, so
an algorithm is a way of talking about a whole class of programs without
worrying about machine-specific details. If you like, the algorithm is the
thing that stays the same whether the program is in Pascal running on a
Cray in New York or is in BASIC running on a Macintosh in Kathmandu.

Analyzing algorithms means working out the computational resources
needed by problems and the algorithms that solve them, and using that
information to design better algorithms. This book will help you to learn
how to analyze algorithms.



xviii Preface

TO THE STUDENT

A book is a machine to think with.

I. A. Richards, Principles of Literary Criticism

This book is about problem solving. Each chapter begins with a problem
and progresses to a good solution while asking several questions. I divide
these questions into pauses, exercises, problems, and research. Further,
there are three types of pauses (pause, long pause, and very long pause)
appearing throughout the chapter; pauses suggest the kinds of questions
you should ask yourself as you read. I've left some pauses unsolved to
keep you thinking, but I've solved most of them in the text, usually within
a page or two. The three other types of questions appear at the end of the
chapter. Exercises are usually harder than pauses, problems are difficult or
require specialized knowledge, and, as far as I know, research problems
are all unsolved.

Although it seems like extra work, you should try to solve as many
problems as you can-even the solved ones. (Virgil said to beware pro-
grammers bearing proofs, didn't he?) Analysis is not a spectator sport;
you learn things about yourself, particular problems, and problem solving
in general, only by trying to solve problems. Along the same lines, you
should program some of the algorithms in the language of your choice and
attempt to improve the program further. Each algorithm should be easily
programmable in Pascal, C, or Modula-2. (Virgil also may have said to
beware theorists bearing programs. )

I want this book to help you solve computational problems but I have
no magic problem-solving wand to give you. Students sometimes think
that their instructor has a secret way to solve every problem and that they
could never guess this secret. Well no technique solves all problems (a
good thing too, otherwise we would all be out of a job). Don't defeat
yourself before you begin by assuming that you can't solve a problem.
Always remember that every solved problem was once a virgin; no matter
how clever its current solution, at one time no one knew how to solve it

I hope this book helps you produce efficient algorithms. I also hope it
shows you something of the beauty of mathematics, and the power and
clarity of thought it can give you. I've tried to make this book interesting,
challenging, and fun. I hope you like it.
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TO THE INSTRUCTOR

Houses are built to live in and not to look on;
therefore let use be preferred before uniformity,

except where both may be had.

Francis Bacon, Essays: On Building

I hope this book is easy to teach with, easy to learn from, and easy to read.
While writing, three kibitzers helped me stick to that goal: an instructor,
a student, and a general reader. The general reader was the easiest to
please. He wanted a readable book telling him what's happening on the
frontiers of analysis and suggesting some interesting unsolved problems.
It wasn't hard to write for him since he is a computer professional, so I
could count on his expertise. The instructor, too, knows what's what. She
wanted me to cover certain topics and to include certain questions. Our
biggest fights were over my unconventional presentation. Of the three, the
student was the only one seeing this material for the first time; so I've tried
hard to please the student. Here are four of the guidelines I followed, and
my reasons for following them.

First, I put how-come before how-to. I develop each idea through a
sequence of approximations to optimal solutions instead of posing a prob-
lem, stating the best known result, and then moving on to the next topic.
Presenting only the best ideas makes students feel that they aren't smart
enough to find something new. Further, students who are less involved
with the material are less motivated to work with it. We need both Socrates
and Aristotle in the search for knowledge, but in education today there is
too much Aristotle and too little Socrates.

Second, I structured the book around problems, not techniques. For
example, there is no chapter on divide and conquer, but it shows up sev-
eral times as a solution strategy suggested naturally by the problem. It's
difficult to motivate a strategy without first telling students what it's for.
Rather than giving them a hammer and having them search for nails, I ask
them to build a table and have them search for something hammer-like.
After banging their thumbs with their shoes for a while students quickly
come to appreciate the power and precision of good tools.

Third, to avoid distracting details I assume that algorithms are to be run
on large inputs and that inputs can fit comfortably in fast memory. Both of
these assumptions are distortions; in practice we have to worry about pag-
ing and block sizes, files and access protocols. Nonetheless, I stress the
idea behind the algorithm and possible improvements, not programming
concerns; it is best to confuse only one issue at a time. I do pay some
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slight attention to programming to prevent students believing that theoret-
ically interesting algorithms are usable as is, or that the presented version
of a popular algorithm (like quick sort) is the last word in efficiency.

Finally, I tried not to lose any students. I develop material in detail early
in each chapter, particularly in the first two chapters, to make sure that the
basics are understood. Each chapter gets more difficult as it progresses,
but every student should be able to follow at least the first three sections
of every chapter. With such a detailed treatment you have the option of
teaching at almost any level of detail, knowing that students can fill in
whatever they may have missed in class. If you deem material elementary
you can assign it as home reading with some confidence that students can
master it themselves. Overall, I've tried to help students understand why
something is done and how they may have come up with that solution
themselves-one day they will have to.

A FEW WORDS ABOUT USE

Education is what survives when what
has been learnt has been forgotten.

B. F. Skinner, "Education in 1984,"
New Scientist, 484, 21 May 1964

We usually advise students to do as many problems as possible; we know
from hard experience that this is the best way to learn. But students, lack-
ing that experience, don't see why they should do what looks like extra
work. The solution that works for me is to construct assignments with
some questions from the book, and to have open-book exams also with
some questions from the book (or a research problem in a take-home
exam). This way everyone wins because students want to solve as many
questions as possible, and instructors have an almost ready-made set of
assignments and exams. Open-book exams tend to emphasize thought
over rote so this scheme also encourages students to really engage with
the material. (Giving students only drill questions is like teaching them
penmanship for four years, and then asking them to become novelists
upon graduation. ) Few of the end of chapter questions have been explic-
itly solved in other texts so open-book exams should be fair. Almost all
questions are original and I have given references for every non-original
exercise and problem.

To stop the book from growing even larger than it is I dropped search
data structures (including hash arrays), amortized analysis, data com-
pression algorithms, string algorithms, geometric algorithms, on-line algo-
rithms, distributed algorithms, and parallel algorithms. The worst omission
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is probably parallel algorithms and I apologize for leaving it out, but a
careful treatment of that topic alone would have doubled the book. The
further readings section at the end of each chapter lists references to related
material.

Even with the omissions, this book covers more material than is usually
taught in a one-semester course. I have used it for a junior-level course
by covering the appendices, the early parts of the first four chapters, and
highlights of the last three chapters; for a middle-level course by sampling
topics from most of the chapters; and for an advanced or graduate course
by covering some topics in depth and tackling a few research problems.
I recommend that all variations at least cover parts of chapters 1, 2, 6,
and 7. Chapter 1 touches on most of the important analysis ideas; chapter 2
discusses some of the more prominent ideas through a specific example
(the searching problem); chapter 6 contains an introduction to cryptology
and tomography; and chapter 7 develops infeasibility and concludes at the
frontiers of analysis.

Although earlier chapters are necessary to understand any chapter fully,
I arranged the material so that later sections of each chapter are not nec-
essary to understand early sections of the next chapter. I use a magnifying
glass icon to signal subsections that go into greater mathematical detail;
they may be skipped on a first reading. Finally, the problem treated in
each chapter increases in computational cost. Roughly speaking: chap-
ter 2 (searching) is logarithmic, chapter 3 (selection) is linear, chapter 4
(sorting) is sub-quadratic, chapter 5 (graphs) is quadratic, chapter 6
(arithmetic) is sub-exponential, and chapter 7 (infeasibility) is (per-
haps!) exponential.

MY THANKS

You may depend on my bare word, reader,
without further guarantee, that I wish this book,

this offspring of my brain, were as ingenious,
sprightly, and accomplished as you could desire;

unfortunately I could not avoid that decree of
Nature requiring that like beget like.

Miguel de Cervantes Saavedra, Don Quixote

This book is a record of my travels through the continent of analysis over
the past six years. It is a distillate of my course notes for graduate and
undergraduate classes on foundations of computing, data structures, the-
ory of computation, and analysis of algorithms, taught at the University of
Waterloo and at Indiana University from 1986 to 1991. This book was a lot
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of fun to write, particularly because it was a joint effort with a lot of fun
people, who I now thank.

First, I thank my parents for making it possible; without their experience
and uncritical support nothing would be possible. And I thank Benton
Leong, Ian Munro, Gaston Gonnet, Arto Salomaa, and Derick Wood, for
giving me the theory bug; this book is a result of their infectious enthusi-
asm. I especially thank Derick for too much to mention here; this book
would not have been possible without him.

I thank Joe Culberson at the University of Alberta, John Franco at the
University of Cincinnati, and Greg Shannon at Indiana University, for class-
testing the book before publication. They put up with an apparently end-
less succession of drafts, and their comments helped to shape the book.
I thank my own classes for foolishly allowing me to experiment on them,
and I thank my department for providing the services I used to complete
the book from a multitude of scattered files and even more scattered notes.
I thank Stephen Ryner, Jr. who did an excellent job drawing the cartoons,
and I thank Indiana University's Center for Innovative Computer Applica-
tions who provided technical support for his artwork. I thank Terry Jones
and Lisa Thomas for their amazing job collaborating on the crosswords.
I typeset the book using I6TEX, thanks to the heroic efforts of John Sellens at
Waterloo, and Steve Hayman, Caleb Hess, and Bruce Shei at Bloomington.

I have benefited enormously from the comments of early readers at
Bell Northern Research, Carnegie-Mellon University, Dartmouth College,
the Georgia Institute of Technology, Indiana University, the University of
Alberta, the University of British Columbia, the University of Chile, the Uni-
versity of Cincinnati, the University of Illinois, the University of Manitoba,
and the University of Waterloo. I profusely thank:

Angela Allen, Ricardo Baeza-Yates, Phil Bradford, Jon Buss,
Dave Chalmers, Mert Cramer, Rob Day, Ruth Eberle, Dave
Forsey, Dan Friedman, Dave Goldberg, Mayer Goldberg, Judy
Goldsmith, Merav Harris, Brian Heck, Dan Jacobson, Rick
Kazman, Sushil Louis, Marek Lugowski, Xiaoyang Luo, Gary
McGraw, Lisa Meeden, Jon Mills, Raymundo Morado, Octavian
Nicoliou, John Nienart, Paul Van Oorschot, Jacqueline Pulliam,
Paul Purdom, Darrell Raymond, Brian Ridgely, Mary Rodes,
Steve Ryner, Peter Shirley, Raja Sooriamurthi, John Stasko, Nee-
lakantan Sundaresan, Gek Woo Tan, Yufeng Tsui, Dedaimia
Whitney, and David Wise.

Each of them read various portions of various stages of the manuscript
and clearly explained to me why it was all wrong. I especially thank Joe
Culberson and Terry Jones for their many ideas and for steadfastly wading
through so very many iterations.
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I thank my consulting editor, Jeffrey D. Ullman at Stanford University,
for valuable discussions on the structure and content of the book, and I
thank my reviewers for their thorough and insightful comments:

Susan Anderson-Freed at Illinois Wesleyan University, Susanne
Hambrusch at Purdue University, Ming Kao at Duke University,
Peter A. Ng at the New Jersey Institute of Technology, M. V.
Ramakrishna at Michigan State University, Ivan Rival at the Uni-
versity of Ottawa, Violet R. Syrotiuk at the University of Mani-
toba, and Robert A. Walker at Rensselaer Polytechnic Institute.

Last, I thank my editor Nola Hague for putting up with me; somehow
she endured the hundreds of hours this book took to get from prospec-
tus to publication with patience, diligence, and wit. I further thank the
other wonderful people at Freeman for doing such a great job producing
the book. I cannot forget the intriguing combination of vivacity and charm
coupled with dedication and professionalism of Freeman president Linda
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CONVENTIONS

"What's the good of Mercator's North Poles and Equators,
Tropics, Zones, and Meridian Lines?"

So the Bellman would cry: and the crew would reply
"They are merely conventional signs!"

Lewis Carroll, The Hunting of the Snark

To begin with we need some special symbols. Theorists have a shorthand
language to set them apart from everyone else. To become a member
of the club you have to learn the mathematical equivalent of a secret
handshake.

Write this Say this
V for all, or for every, or for each
3 there exists, or there is, or for some, or for at least one
E is an element of, or is in, or in

implies, or only if, or is sufficient for

implies and is implied by, or if and only if,
or is necessary and sufficient for

Any symbol with a diagonal stroke through it is the negation of the symbol.
Thus, : means "not equal," =#=. means "does not imply." These conven-
tions apply everywhere; the ones that follow are specific to this book.

Integers

The symbols i, j, k, 1, m, and n will always be integer variables and the
symbols a, b, c, and d will always be integer constants.

Reals

The symbols w, x, y, and z will always be real variables and the symbols
r, s, t, u, and v will always be real constants. The symbols p and q are
also real variables but they are reserved for probabilities.
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Functions

The symbols f, g, and h will always be functions. In this book func-
tions almost always map positive integers to positive reals, and are non-
decreasing (that is, n > m ===ý f(n) > f(m)).

integer functions integer probabilities real real

constants variables constants variables

abcd fgh ijklmn pq rstuv wxyz

Paus What letters don't have a default type?

Subscripts

A subscripted symbol is of the same type as the unadorned symbol. For
example, since f is always a function then fl, f2, and f3, are also func-
tions.

Statements

By default all variables are greater than zero. Thus, the statement "Vn"
(or i, j, k, 1, or m) is shorthand for "V positive integers n." To specifi-
cally include zero we say "Vn > 0." Similar rules apply to the reals.

Icons

Several subsections throughout the book are marked with one of three
icons. The first icon identifies subsections that introduce material of general
interest that is specifically useful for analysis. The second icon identifies
subsections that introduce an idea widely applicable when fashioning algo-
rithms. The third icon identifies subsections that are in more mathematical
detail than the previous text, and can safely be skipped on a first reading.



'What is the use of a book,' thought Alice,
'without pictures or conversations?'

Lewis Carroll, Alice's Adventures in Wonderland

Our first aim has been to write an
interesting book, and one unlike other

books. We may have succeeded at
the price of too much eccentricity, or

we may have failed; but we can
hardly have failed completely, the

subject matter being so attractive that
only extravagant incompetence

could make it dull.

G. H. Hardy and E. M. Wright,

An Introduction to the Theory of Numbers

A great man quotes bravely, and will not
draw on his invention when his memory

serves him with a word as good.

Ralph Waldo Emerson,
"Quotation and Originality," Letters and Social Aims

A facility for quotation covers
the absence of original thought.

Dorothy L. Sayers, Gaudy Night

Ridentem dicere verum, quid vetat.

[What forbids us to tell the truth, laughing?]

Horace, Satires, 1.24



OVERVIEW

First I'll instruct thee in the rudiments,
And then wilt thou be perfecter than I.

Christopher Marlowe, Doctor Faustus

Sow CAN we decide in advance how long a program will take to run?
Suppose we're writing a large graphics program to produce and dis-

play an animated movie on a bitmapped screen-a screen with more than
a million directly addressable points, called pixels (picture elements). To
fool the human eye into believing the motion is continuous, the program
must generate at least thirty new images every second. So the program
needs to do at least thirty million operations per second. Further, each of
these operations can be quite complex depending on the complexity of the
movie-for example, a black-and-white movie of a bouncing ball versus a
full-color animation of Bugs Bunny.
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It isn't sensible to run the program to see if it's too slow. If it's too
slow we have to change it to speed it up. But, with no guiding prin-
ciples to aid prediction, every time we change the program we have to
rerun it to find out how long it takes after the change. This is frustrat-
ing, it wastes our time, and it wastes computer resources. Worse, it isn't
even guaranteed to make the program fast enough. On the other hand, if
the program is fast enough for the current movie we still won't know if it
will be fast enough for more complex movies. In both cases we need a
way to predict-based on the time it takes to produce simple scenes-how
much time it will take to produce complex scenes. We need a yardstick
to measure the program's performance as a function of the movie's com-
plexity. To clarify what this yardstick should be like, let's consider two
commonplace problems-washing dishes and reading books.

Suppose we want to find out about, say, llamas, from one of several
books on llamas. Which book should we read? To choose, we need a
measure of the books' reading complexity: a "book difficulty" yardstick.
Four possible ones are: book length, average word length, average sen-
tence length, and vocabulary size divided by the number of pictures. There
is a relation between the sizes of each of these numbers and a book's
difficulty-the larger the number, the harder the book is to read. But not
all are good difficulty measures because they're not equally easy to com-
pute, and they're not equally good at prediction. A convenient measure
should have at least four characteristics:

"* it should measure effort we care about;

"* it should be quantitative, so that it's easy to compare two books;

"* it should be easy to compute, so that computing it isn't as hard as
simply reading the books; and

"* it should be a good predictor, so that it's easy to predict a new book's
difficulty.

Let's see how these ideas work with a household problem-dishwash-
ing. To analyze this problem we have to select a measure of the size of
the problem and a measure of the work needed to solve it. First, the
number of dirty dishes seems like a good measure of problem size-the
larger the number, the more work we have to do. But there are other
plausible measures. For example, some of the dirty dishes could be large
pots, or we could have fine china that we have to wash separately. So
we could also use size or fragility to measure problem size. Second, the
amount of time we take seems like a good measure of effort. But, again,
there are other plausible measures: for example, the amount of water we
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use, or the amount of kitchen counter space we use; in a drought or a
kitchenette each of these could be more important than time. Thus this
example shows that we can measure both problem size and solution effort
in many ways.

In general, to analyze a problem we need to pick a measure of prob-
lem size and a measure of solution effort, then see how they relate; the
measure of solution effort should have at least the four properties itemized
above. In the book-reading problem, the two measures could be book
length and reading time. Having found how they relate we can look at a
new problem instance, find its size, and plug that into the relation we've
previously derived to estimate the work needed to solve the new instance.
For example, in the dishwashing problem we may estimate that one dish
takes one minute, so tonight's dinner party will take half an hour. Further,
if someone suggests a new way of washing dishes (for example, buying a
dishwasher) we have a way to compare the two methods.

Now let's apply our insights from these two common problems to pro-
grams. Time, as they say, is money, so let's assume that only a pro-
gram's speed matters. How can we measure a program's speed without
running it? We cannot compare two programs simply by running them,
because their run times depend on the programmer, language, compiler,
operating system, and machine. But if we have no particular language
or machine in mind, how can we tell how fast each program is? Can
we even talk about programs when we don't have a particular language
in mind? Instead of thinking of a particular program we should consider
the idea behind the program, the algorithm-the language- and machine-
independent strategy the program uses. Algorithms are to programs like
plots are to novels.

Now how can we compare the speeds of two algorithms solving the
same problem? Guided by our two household examples, we see that we
need a function of the problem instance that reflects the work the algo-
rithm must do to solve the problem for that instance. This will be a good
measure of how fast the algorithm is. Specifically, we can count some
set of operations that the algorithm performs, then we can derive a rough
estimate of the number of such operations required as inputs increase in
size. With such a function we can predict how long the algorithm will take
on large problem instances, and we can compare two or more algorithms
solving the same problem to find the most efficient one.

Let's see how this works with a simple programming example. For sim-
plicity let's assume that:

"* assigning a value to a variable takes a fixed time, and

"* all other operations take no time.
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Let's call these two assumptions the model that we use to analyze the prob-
lem.

Now look at the three code fragments in figure 1.1. The first code
fragment performs one assignment, the second performs n + 1 assignments,
and the third performs n 2 + 1 assignments. Suppose that all three fragments
do the same thing to the variable sum.

Pause Do they?

sum -- n 2  sum +- 0 sum +- 0

for i from 1 to n for i from 1 to n
sum - sum + n for j from I to n

sum +- sum + 1

Figure 1.1 Three code fragments

If we had to choose a fragment based on speed alone, we would surely
pick the first over the second, and the second over the third. Under our
simplifying assumptions (our model), assignments are the only operations
that matter. (This is false if squaring n takes longer than doing n addi-
tions. ) Within this model, the first fragment is cheaper than the second,
and the second is cheaper than the third. And this is independent of the
actual cost of an assignment.

What's more, there is a big difference between the first and second frag-
ments. No matter what n is, the first fragment always does a fixed amount
of work. However, as n grows, the second fragment does work propor-
tional to n (see figure 1.2). Thus, the ratio of the work done by the
second fragment to the work done by the first fragment is unbounded.
The second fragment does roughly n times as much work as the first, and
n can, we presume, become arbitrarily large.

Further, the same relation holds between the second fragment and the
third; n 2 grows much faster than n. To see this, imagine extrapolating
the numbers in table 1.1 out to the problem sizes that computers usually
deal with. For example, if n is a million, then n 2 is a million times larger
than n. As n increases, the ratio of the run times of the third to the second
(or the second to the first) grows without bound. The growth rates of the
three code fragments are different.

Think about growth rates in terms of the change in the amount of
work the fragments do when the input doubles in size. If we double
the input (n), the first fragment's run time stays the same, the second
fragment's run time doubles, and the third fragment's run time quadruples!
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n 2 + 1
n2+~ + nIl

n

Figure 1.2 Number of assignments the three fragments execute

So if deep in our graphics program we have to square n once per pixel,
and if our simplistic model is reasonable, then we should pick the first
fragment.

n 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1

n + 1 2 3 4 5 6 7 8 9 10 11

n 2 + 1 2 5 10 17 26 37 50 65 82 101

Table 1.1 Comparison shopping

Pue If the run time grows like n3 , what happens if we double the input?

c00

In this book we're going to explore a continent-the continent of anal-
ysis. Geographic explorers wanted adventure, trade, or fortune; knowl-
edge, land, or freedom. We want to use our machines effectively, to solve
our problems efficiently, and to find the limits of the possible. The terri-
tory we're about to explore is mostly uncharted but for a few settlements
here and a number of outposts there. Often we will be on the frontier;
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at times we will be pioneers. To gear up for the trek we will need tools
and weapons-pathfinding through difficult country is rough work. This
chapter gives you the tools every pioneer started with, and the next six
chapters take you on treks through different parts of the continent.

Each problem is a river to ford, a ravine to cross, a mountain to climb,
but we will attack all of them in the same way. Here's our plan:

"* We start by recognizing a problem. This problem must be of the
restricted kind that we can solve on digital computers.

" First, we build an abstract model so that we can talk about the prob-
lem afid decide between different solutions to it. One way to cross a
mountain range is to fly over it, but that's not a valid solution if we
happen not to have a plane. The model is an inventory of the tools
at our disposal to solve the problem, and it determines the yardstick
we use to choose between alternate valid solutions to the problem.

" Next, we design an algorithm to solve the problem within the model.
An algorithm is some way to solve the problem, using only the tools
allowed by the model, that is clear enough that even a computer can
follow it.

"* Then, we analyze both the algorithm and the problem within the
model.

"* Analyzing the algorithm gives us an upper bound on the work
sufficient to solve the problem within the model.

"* Analyzing the problem gives us a lower bound on the work nec-
essary to solve the problem within the model.

"* Finally, we compare the upper and lower bounds to see if the solu-
tion is good enough. If it isn't, then either we redesign the algorithm
or we try to prove a better lower bound. If that doesn't work we
change the model. And if that doesn't work we change the problem!

During the first five sections of this chapter we will explore these stages
using one problem as an example. Then, in sections 1.6 and 1.7 we will
stock our knapsacks with some tools and weapons. The tools will help
us reason about growth rates, and the weapons will help us tame wild
functions. Finally, in section 1.9 we will encounter some important hard
problems.

Now let us begin.
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1.1 Problems

And there's a dreadful law here-it was made
by mistake, but there it is-that if anyone asks

for machinery they have to have
it and keep on using it.

Edith Nesbit, The Magic City

We want to identify computationally solvable problems, and for each such
problem we want bounds on the computation cost. First we only consider
problems that are well-defined enough to be solved on computers. Then
we restrict ourselves further to problems that we can divide into sizes. For
each size there may be many instances of the problem. For example,
every time we wash dishes we're solving an instance of the dishwashing
problem; each instance is different, if only in time, but many of them may
have the same size (say, the number of dishes).

To solve an instance of the problem we first code the instance to form
an input to an algorithm. We then feed this input to the algorithm and
the algorithm produces some output. Then we decode this output into an
answer for the problem instance. To solve a problem we must show that
we can go through this process for any instance of the problem.

One nice thing about digital computers is that once we find a solution
for all instances of a problem of one size, we can use it for instances of
any size. Further, it is usually not interesting to solve a problem for small
sizes; those are often solved faster by hand. So we're interested in well-
defined problems whose instances we can group by size, and we want
efficient solutions when those sizes are large.

Grouping problem instances by size is like grouping books by their page
length (or word count, or any other quantitative measure). For example,
using length as our size measure, the set of all fifty page books is the set
of instances of the book-reading problem of size fifty. Note how arbitrary
this notion of size is; in the introduction we considered using page count
itself as a measure of the reading difficulty of a book. In effect, we pick
one "natural" measure, then see how another measure relates to it.

Selecting a natural measure is not always easy to do. For example, sup-
pose we want to arrange some books by height. One natural size for this
problem is the number of books, since the more books there are to arrange
the more work there is to do. But this assumes that one book is much like
another. If one of the books is as big as the Encyclopxdia Britannica then
we should take weight into account as well.

Okay, pretend we have a reasonable measure of input size. Now we
have to estimate the difficulty of each instance of the problem in terms of
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its size. We want a function of the problem's size that reflects the effort
necessary to solve the problem. So far we have assumed that the first thing
to look at is the program's speed. But, our machine may have little mem-
ory, so we could look for programs that use the least memory. Similarly,
it could be important to reduce the number of disk accesses, the number
of comparisons, the number of assignments, or the number of multiplica-
tions. In general, there are an infinite number of combinations of program
attributes we could try to improve.

We could also choose among programs using more intangible proper-
ties. For example: how hard they are to write, how hard they are to
modify, and how hard they are to understand. However, lacking a for-
mal definition of these important properties let's leave these measures of
program cost to software engineering. This is like trying to measure the
difficulty of writing a book, not reading it.

Thus, our aim is to solve problems with as little computational effort
per problem instance as possible. Sometimes to reduce computational
effort we expend great conceptual effort; we only do the conceptual work
once but the resulting program does the computational work every time
we run it. 1

One more thing: to do this analysis we need mathematics. Some peo-
ple confuse mathematics with mere symbol manipulation, but mathematics
is much more about critical thinking than it is about symbols. Thinking
mathematically forces us to identify our assumptions and so deal with the
unusual. As a corollary, we shouldn't be surprised if we derive counter-
intuitive results using mathematics; in a way, that's what it's for. It's espe-
cially dangerous to rely only on intuition when designing algorithms since
computers typically deal with huge problem sizes, and we don't. Intuition
is a product of everyday experience and most of us don't think about things
with many parts every day. For example, we have a hard time appreciating
the effects predicted by quantum theory-we call quantum effects "counter-
intuitive." A ball in a bucket does not spontaneously jump through the wall
of the bucket, yet this is precisely what electrons do in potential wells, their
analogues of buckets.

Similarly, when designing an algorithm we tend to think of the algorithm
working on about ten items when in fact we're going to use it on a million
items. As we have seen, any display program producing graphics on a
bitmapped screen must look at about a million pixels just to process one
screenful. And this is not even counting the work the program must do
per pixel. Anything being repeated a million times per screenful must be

'Besides being a great poet Yeats was obviously a great programmer: "A line will take us
hours maybe/ Yet if it does not seem a moment's thought,/ Our stitching and unstitching has
been naught." W. B. Yeats, Adam's Curse.
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as fast as possible. Further, even if any one problem instance is small,
when there are a million instances even small improvements per instance
magnify into large savings.

In sum, the Holy Grail of analysis is to put our computational resources
to the best possible use. Given the choice between a ten-second solution
and a ten-hour solution we would be crazy to choose the ten-hour solu-
tion. Of course, the ten-hour solution is perfectly acceptable if we only
have to solve the problem once, or if the ten-second solution is hard to
program, or is otherwise expensive. But this is just a more general version
of the same goal-we are still trying to reduce effort, the only difference is
that now "effort" includes more than just the computer resources used in a
solution.

Problem Types

We can classify computational problems by problem requirements and
problem difficulty.

In terms of problem requirements there are six computational problems:

"* Search problems: Find an X in the input satisfying property Y.

"* Structuring problems: Transform the input to satisfy property Y.

"* Construction problems: Build an X satisfying property Y.

"* Optimization problems: Find the best X satisfying property Y.

"* Decision problems: Decide whether the input satisfies property Y.

"* Adaptive problems: Maintain property Y over time.

Chapters two and three examine search problems; chapters four and five
examine structuring problems; chapters five and six examine construction
problems; and chapters six and seven examine optimization and decision
problems. We will rarely examine adaptive problems even though they are
of great practical importance and they include many real systems (such as
operating systems, adaptive control systems, and server systems). Adap-
tive problems involve practical issues beyond the scope of this book.

Instead of tackling a realistic version of a problem we will look at a
simplified version-a toy problem. Toy problems do not include memory
management issues and other important details. Although unrealistic, toy
problems are useful because we can solve them without the clutter atten-
dant on more realistic versions of the same problem. Thus they better
expose the problem's inherent difficulty. We can then use lessons learned
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while solving toy problems to solve more realistic problems-in the same
way that law students use old cases.

We can also classify problems by difficulty. There are four categories of
hard problems:

" A conceptually hard problem: We don't have an algorithm to solve
this problem because we don't understand the problem well enough.

" An analytically hard problem: We have an algorithm to solve this
problem, but we don't know how to analyze how long it will take to
solve every problem instance.

" A computationally hard problem: We have an algorithm and we
have analyzed it, but analysis suggests that relatively small problem
instances will take millions of years to solve.
This category splits into two groups: problems we know are compu-
tationally hard, and problems we suspect are computationally hard.

" A computationally unsolvable problem: We don't have an algorithm
to solve this problem because no such algorithm can exist.

We can use these four categories to differentiate among three subfields
of computer science: artificial intelligence explores problems in the first
and second categories; complexity theory, of which analysis is a part,
explores problems in the second and third categories; and computability
theory explores problems in the third and fourth categories.

In this book, our central metaproblem revolves around the third cate-
gory. What does it mean to say that a problem is computationally hard?
We will return to this question at the end of this chapter (page 52) and
in chapter seven.

000

Let's use the following toy problem as a running example of the analysis
process. After discussing each step in solving an arbitrary problem we'll
turn to our example problem to see how the step works in practice. As
the analysis proceeds we will see the problem first as conceptually hard,
then analytically hard, and finally computationally hard.

The towers of Hanoi problem: Given three pegs and n disks of different
sizes placed in order of size on one peg (see figure 1.3), transfer the disks
from the original peg to another peg with the constraints that:

"* each disk is on a peg,

"* no disk is ever on a smaller disk, and

"* only one disk at a time is moved.
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Figure 1.3 The Hanoi problem with seven disks

The towers of Hanoi problem was invented by the French mathematician
tldouard Lucas in 1883, and he invented the following story to go with
it: it seems that there is a similar three-peg arrangement at the "Tower of
Brahma" in Benares, India, except that in Benares there are sixty-four gold
disks on three diamond pegs. Legend has it that when the temple priests
have moved all the disks to another peg the world will come to an end. If
the priests can move a disk from one peg to another in one second, how
long does the world have yet to exist?

As you can see, this problem is of great practical importance.

1.2 Models
A good model represents a well-balanced

abstraction of a real practical situation-not
too far from and not too close to

the real thing.

Arto Salomaa, Computation and Automata

Given a problem, we first select a model so that we can talk about the
problem sensibly. To tell whether something is a solution to the problem
we pick a set of legal operations that solutions can use. And to distin-
guish between good and bad solutions we pick an operation, or set of
operations, in that set to minimize. The set of legal operations is the
environment and the subset of operations we want to minimize is the goal.
The environment and the goal together make up the model. Choosing an
environment includes choosing the kind of machine that solutions will run
on, the type of language that solutions will be written in, and the character
of the physical environment that the machine runs in. For example, we
usually assume, contrary to reality, that cosmic rays will not disrupt the
machine.

Choosing a set of operations and restricting attention to only a few
is analogous to scientific modelling, in which we abstract some essential
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feature and examine it alone. A physicist examining falling bodies first
assumes that air resistance is negligible and that the body's mass is minus-
cule compared to the mass of the earth. As she better understands these
simple situations she allows drag due to air (and the like) back into the
equations of motion until she arrives at a good approximation to the fall
of real bodies. As she removes more and more simplifying assumptions,
the model behaves more and more like the real system.

The analysis grail is to minimize all resources used. This, like the Holy
Grail, is difficult to attain; so to begin we will count the number of times
only one easily identifiable operation is performed (for example, an addi-
tion, a comparison, a disk access). We assume that the chosen opera-
tion is proportional to the total computational resources that the problem
requires. Our goal then is to attain grace by minimizing the number of
times we perform a chosen operation while restricting ourselves to solu-
tions within a well-defined, and small, model. When choosing a model,
we will usually assume that the crucial operation is proportional to the run
time of the algorithm we choose to solve the problem. Usually the cho-
sen operation is expensive, or frequent, or it otherwise reflects the overall
amount of work done.

Here's how this works for the dishwashing problem. Suppose we
choose to measure problem size by the number of dishes to be washed.
Suppose we want to predict how much time a new problem instance will
take (as opposed, say, to how much water it will take). First, we select
the set of operations that we can use to solve the problem; for instance,
picking up a dish, immersing it, applying soap, and so on. Different
choices of legal operations determine different models. For example, one
model may assume that we have a dishwasher!

After choosing the legal operations we choose one as a barometer for
all the others. For instance, it's likely that drying a dish is no harder
than washing a dish. And, since we must dry every dish we wash, we
may choose to count only the number of times we wash a dish and
ignore drying. Note that we have made the further assumption that over-
all washing time (the property we're trying to reduce) is proportional
to the time taken to wash each dish. Finally, note that we only know
that it is proportional, we don't know the actual time it will take. That's
good enough because we can compare two or more solutions in the same
model based only on proportionality information. Further, we can always
find the actual time by running experiments to determine the constant of
proportionality.

The two assumptions given for the problem of squaring n (page 3),
together with some reasonable assumptions about a suitable machine, con-
stitute a model for that problem. In this model, the goal is to minimize
the number of assignments since, by assumption, assignments are the only
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operations that matter. Further, in this model, the first fragment is the best

program for the problem. There is no guarantee, however, that this model
captures the real difficulty of the problem. After deciding on a model we
have to go back to reality to check its predictive power. Only after check-
ing predictions against reality can we be sure that the model captures the

essence of the problem's difficulty.
For instance, suppose we run each of the three fragments with several

inputs and discover that their run times are about the same, no matter how
large the input is. That tells us that assignments don't matter that much (or
that the compiler is changing our code). Alternately, we may find that the
run times roughly follow predicted behavior. Now suppose the problem is
so frequent, expensive, or important that we need a really good estimate of
future run times. Then, and only then, should we add more sophisticated
measures to our model in an effort to get more accurate time predictions
(for example, we may decide that additions should also be counted).

Our default environment will be that we are running our algorithms on
errorless, sequential, digital computers, and that we will translate our algo-
rithms into programs in an imperative language (like Pascal). Our envi-
ronment for the towers of Hanoi problem will be the default environment
plus the three constraints defining legal moves (page 10). Our goal will
be to reduce the total number of disk moves.

1.3 Algorithms

It has often been said that a person does not
really understand something until he teaches it to
someone else. Actually a person does not really

understand something until he can teach it
to a computer.

Donald E. Knuth,
"Computer Science and Its Relation to Mathematics,"

American Mathematical Monthly, 81, 1974

Having chosen a model for the problem, next we devise an algorithm to
solve the problem. This algorithm must use only the operations allowed
within the model. Up to this point we haven't seen a formal definition of
an algorithm, nor (surprise!) will we see one now. For now, an algorithm
is a finite sequence of operations, each chosen from a finite set of well-
defined operations, that halts in a finite time.

That looks like a definition, but it really isn't. It places some restric-
tions on what an algorithm can possibly be (for example, it cannot take
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indefinitely long to describe) but it doesn't say what an algorithm is. A
really useful definition would allow us to "mechanically" recognize an algo-
rithm whenever we saw one, in the same way that we can recognize alarm
clocks. This is hard because algorithms come bundled with the idea of
human purpose; we intend an algorithm to accomplish some goal. Unfor-
tunately, and unlike alarm clocks, no two algorithms necessarily have the
same goal (beyond the complex one of "solving a problem"). To get to
a formal definition will take us most of this book. So, for the time being,
when you see algorithm think recipe, prescription, procedure, method, strat-
egy, technique, or computation.

000

All right, now let's design an algorithm solving the towers of Hanoi prob-
lem. The first thing to do when confronted with a problem is to solve the
problem for its smallest instances. Perhaps there is some insight there that
we can generalize to larger instances. For the towers of Hanoi problem
the most natural size is the number of disks, n; also, for each size there
is only one problem instance. When n = 1 or n = 2 the problem is easy;
however n = 3 requires a little thought to minimize the number of moves.
Label the three pegs in figure 1.3 [p. 11] A, B, and C, and suppose we
have to move the disks from A to C. If we move the smallest disk to B
then we will be in trouble when we move the second smallest to C, since
C is the eventual destination of the largest disk. Thus, we must move the
second smallest, which means that we must move the smallest.

This seems to imply that we should first put the smallest on C, then
the second smallest on B, and finally the smallest on top of the second
smallest thereby leaving C free for the biggest disk. Now what does this
imply when we have n disks? Well, when we're ready to move the biggest
disk (which is still sitting patiently on A), there can't be any disks on top
of it since we can only move one disk at a time. So, all the smaller disks
must be on B. Also, the n - 1 disks on B must be stacked in order of
size, otherwise some disk must be on top of a smaller one.

Pause Think about this before reading on.

Okay, at some point the biggest disk is alone on A and all n - 1 smaller
disks are piled neatly on B. There is nothing on C in preparation for the
big move. Now observe that all the time the biggest disk was patiently
sitting on A, the other disks were oblivious to it. Why? Well, the rules say
that no disk may be put on a smaller disk, but since the biggest disk is
bigger than all others, it is always legal to place any other disk on A if
there is nothing on A besides the biggest disk!
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If we could only solve the same towers of Hanoi problem but with n - 1
disks and with a different destination peg (B instead of C) then we could
solve our version of the problem! But how, you squeak, can we solve a
problem in terms of itself? Isn't this circular reasoning? Well, no. In the
reduction of the problem with n disks to one with n - 1 disks we know
that the process will eventually stop since the number of disks is decreasing
and we know how to solve one and two disk problems.

Let's go back to the n = 3 case. There we realized that we needed
to make a tower of the two smallest disks on B before we could move
the biggest disk from A to C. So, if only we could solve the n = 2 case
(but for a different destination peg) then we could solve the n = 3 case
(try it). But we can easily solve the n = 2 case. Thus, when n = 3, we
first move the top two disks to B (three moves), move the biggest disk
to C (one move), then move the two disks on B to C (three moves).
So three disks take no more than seven moves. See figure 1.4.

Figure 1.4 Solving the Hanoi problem with three disks

In general, we have n disks and we want to move them from A to C.
Our algorithm is to first move the top n - 1 disks from A to B, move
the biggest disk from A to C, then move the n - 1 disks on B to C. An
algorithm that uses itself to solve a problem is called a recursive algorithm.
See algorithm 1.1; the pegs have been given more meaningful names in
the algorithm.
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HANOI(Start, Temp, End, n)
{ Solve the towers of Hanoi problem for n > 1 disks. }

ifn=1
then

move Start's top disk to End
else

HANOI (Start, End, Temp, n - 1)
move Start's top disk to End
HANOI ( Temp, Start, End, n - 1)

Algorithm 1.1

0W0

How did we find this algorithm? The first ideas came from feeling out the
problem for small n. Then we looked at large n and tried to generalize
the insights generated from the first phase. Finally we went back to small
n to see if the generalized insights made sense.

The forward-backward strategy: Solve simple special cases and
generalize their solution, then test the generalization on other
special cases.

Depending on how insightful we are in the first phase, and how well we
generalize in the second phase, this procedure could repeat many times.
Think small, then think big. This strategy is very handy, but it won't do
well on problems whose best solution for large n is not like their best
solution for small n.

1.4 Analysis

When we mean to build,
We first survey the plot, then draw the model;

And when we see the figure of the house,
Then must we rate the cost of the erection.

William Shakespeare, Henry IV part 2, III

Having decided on an algorithm to solve the problem the next step is to
analyze both the algorithm and the problem within the model. We want
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to estimate the resource cost of an algorithm either by itself or in compar-
ison to other algorithms solving the same problem. And we would like to
do that without writing, debugging, and then running programs. Further,
we want to know if we're wasting time trying to improve the algorithm;
perhaps it cannot be improved? In sum, we want to predict how bad an
algorithm can get, and we want to determine how hard the problem is.

Upper Bounds

Analysis first involves figuring out bounds on the number of operations an
algorithm performs given an input of size n. Usually we will first find its
worst cost, that is, the maximum number of times it performs the chosen
operation. Since the algorithm is proof that we can solve the problem
using at most that number of operations, even in the worst case, this gives
an upper bound on the problem's worst cost as a function of n.

We derive an upper bound for the problem within the model by work-
ing out the cost of the chosen algorithm on problem instances of a fixed
size. The upper bound is a crude measure of the computational effort our
algorithm requires. Should we design another algorithm having a smaller
cost then, if our assumptions about real costs are sensible, we can discard
the first algorithm. The worst cost of the algorithm is the worst that could
happen, the pessimist's view. We could also be optimistic and find the
best cost of the algorithm-the least work the algorithm could possibly get
away with for some one input of a fixed size.

To put these definitions algebraically, suppose A is the algorithm we are
analyzing and In is the set of all possible inputs to A, each of size n.
Let fIA be the function expressing the resource cost of A; that is, if I is
an input in In, then fA(I) is the resource cost of A when given input I.
Then

worst cost(A) = max fA(I) , best cost(A) =min fA(I)
IEIý 1EEln

where "max" means "the largest value where I ranges over In."
IEIn

We could also look at the work the algorithm does in the not-so-good
case, the tolerably-bad case, and so forth. Instead, observe that for a fixed
input size the algorithm's best cost, not-so-good cost, tolerably-bad cost,
and worst cost, all occur with some frequency. So, for example, its best
cost may occur more often than its worst cost, and we would like a mea-
sure reflecting that. To derive this measure we find the algorithm's average
cost, the average amount of resources the algorithm consumes assuming
some plausible frequency of occurrence of each input in In.

Figure 1 .5 gives resource usage graphs of three fictitious algorithms solv-
ing the same problem. In each graph the vertical axis represents the
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resource cost, f, and the horizontal axis represents In. In theory we can
draw these graphs by picking a representative input size, running the three
algorithms on each possible input of that size, and plotting the resource
cost for each input. In practice we can't always do that because not all
problems have a "representative" input size.

fA f13 fc

In In In

Figure 1.5 Resource usage graphs of three algorithms

In terms of its resource usage graph, an algorithm's worst cost is the
highest value, and its best cost is the lowest value. See figure 1.6. The
average cost is the average of the values weighted by the frequency of
occurrence of the corresponding inputs relative to all inputs in I,. (The
frequency of occurrence of each element of I, is not shown; it requires a
separate computation. )

f

worst cost

best cost

In

Figure 1.6 An algorithm's best and worst costs

Pause] Can the average cost be worse than the worst cost, or better than the best
cost?

In figure 1. 5, algorithm A's worst cost is lower than B3's but higher
than C's. Thus, if it's important to have a good worst cost, then we should
pick C. But if the best cost is important, then we should pick A. Finally, B
behaves well for about half of the inputs. Therefore, for some input fre-
quencies, 13 should behave better on average than either A or C.
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The average cost is trickier to find than either the best or the worst
cost. The only way to judge which of the three algorithms is preferable
on average is to figure out with what frequency inputs occur. For example,
in terms of the figure, if most of the inputs the algorithms face in practice
come from the right-hand half of the input space, then B is probably best
on average. But if most inputs come from the left-hand side, then A is
probably the best on average.

So which algorithm is best? Each of the three complexity measures
(best, worst, average) can favor a different algorithm! Now recall that
we started off almost arbitrarily picking speed as our performance yard-
stick. There are an infinite number of other attributes we could use as
yardsticks. Each of these yardsticks has a corresponding resource usage
graph. For each of these graphs there are an infinite number of complex-
ity measures we can use to judge between them. Finally, there can be an
infinite number of algorithms all solving the same problem! As you can
see, trying to find the "best" algorithm is insanely complicated. This forces
us to ruthlessly pick only a few criteria to judge an algorithm's goodness.
So given an algorithm, it's sensible to first find its worst cost; then, if the
problem is important enough, its average cost. And that's what we'll do.

The average cost of the towers of Hanoi problem is the same as its
worst cost since there is only one problem instance of each problem size.
(We've chosen problem size to be the number of disks, n.) So let's find
its worst cost only.

We want a function, f, mirroring the total number of times algorithm
HANOI (page 16) moves a disk. f should be a function of n since that is
the only thing varying in the problem. If we can figure out such a function
then we can estimate how the work needed to solve the problem grows
as n grows (for example, to see when the priests will finish moving their
sixty-four disks).

The simplest thing is to let f(n) be the number of times HANoI moves
a disk when solving the problem on n disks. At present we know three
things about f: f(1) = 1, f(2) = 3, and f(3) = 7. Further, we can relate
the work HANOI does to solve the n disk case relative to the work it does
for the n - 1 case, namely:

f(n)=f(n-1)+1+f(n-1)=2f(n-1)+1, Vn>4

Now f(2) = 3 = 2f(1)+1 and f(3) = 7 = 2f(2)+1. Thus, we can simplify
our four facts to two: f(1) =1 and f(n) = 2f(n - 1) + 1, Vn > 2. Let's
write this as follows:

f (n) nf~)=2f (n -1)+l1 n > 1
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This is called a recurrence because f shows up again (recurs) in its own
definition. To find f we must solve the recurrence. That is, we want an
easily computable expression that predicts HANOI's cost for any n.

The most obvious thing about the recurrence is that the values at least
double if we add a disk (f(n) > 2f(n - 1)). If we increase the number
of disks from 1 to n, then each version of HANoi will take at least twice as
long as the last. Now if we start with 1 and double it n times we will end
with 2". So perhaps the time to solve an n-disk Hanoi is about 2n (see
table 1.2 for the first few powers of two). In fact, looking at the table we
see that f(n) is 2n - 1. Well that was easy.

n 1 2 3 4 5 6 7 8

2n 2 4 8 16 32 64 128 256

n 9 10 11 12 13 14 15 16

2n 512 1024 2048 4096 8192 16384 32768 65536

Table 1.2 Powers of two

P e Is this reasoning okay?

Unfortunately we have no reason to believe that the number of disk
moves will always be 2n - 1 just because that's true for n < 4. For exam-
ple, 5n is bigger than n 2 for n < 4, but it's less for all larger n. Fortu-
nately there is an easy way to prove the result-by exploiting the recurrence
defining f.

Pa use Do you see how?

We want to show that f(n) = 2n-l for all n. Now if f(n-1) = 2n-1-1
and n > 1, then from the recurrence we know that

f(n) = 2f(n - 1) + 1 = 2(2n-1 - 1) + 1 = 2n - 1

So if there is ever an n for which f(n) = 2n - 1, then from that point on f
will always conform to this rule! Now, note that f(1) = 1 = 2 - 1 = 21 - 1.
Therefore f conforms to the rule when n = 1; hence f always conforms
to the rule.

Thus, when there are n disks, HANoi moves a disk exactly 2n - 1 times.
Therefore, 2n - 1 disk moves is an upper bound on the towers of Hanoi
problem. This is a proof by induction.

Using induction is like showing that we can climb an arbitrarily high
ladder if we can show two things:
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"* We can climb onto a rung of the ladder. This is the basis step of the
proof.

"* If we can climb to the kth rung then we can climb to the (k + 1)th
rung. This is the inductive step of the proof.

With this understanding, here is the proof again.
Basis step: HANOI makes one disk move when n = 1, so f(1) 1.

(This is the boundary condition of the recurrence). So f(1) = 21 1.
Therefore f(n) = 2n - 1 when n = 1.

Inductive step: Suppose that for all k < n, f(k) 2k - 1. Then since
n > 1, from the recurrence we must have that f(n) = 2f(n - 1) + 1. But
n > n - 1. Therefore f(n) = 2(2n-1 - 1) + 1 = 2n - 1.

Hence, if the inductive assumption is true for all k < n then it is true
for n as well. Thus, f(n) = 2n - 1 for all n.

Pause Transform the recurrence to a new recurrence involving the function g
where g(n) = f(n) + 1. What is g(1)? Does this new recurrence simplify
the proof?

To grasp how big 2n becomes after only a short time, observe that
210 = 1,024. Thus, ten disks require more than a thousand moves. 220 =
1,048,576 is more than a million; 230 = 1,073,741,824 is more than a bil-
lion; and 240 = 1,099,511,627,776 is more than a trillion. 2 In computer
memories, 8 bits (binary digits) is a byte, 210 bytes is a kilobyte, 220 bytes
is a megabyte, 230 bytes is a gigabyte, 240 bytes is a terabyte, and 250 bytes
is a petabyte. Powers of two occur so often in analysis that you should
memorize the first ten powers of two.

Ps Roughly how many digits are there in a petabyte?

Lower Bounds

After finding an upper bound on the problem's difficulty we find the small-
est number of operations necessary to solve the problem over all inputs
of size n. And, again, usually first for the worst cost. This gives a lower
bound on the problem's worst cost. A lower bound on the worst cost says
that at least this much work must be done in the worst case. Note that the
lower bound analysis is done on the problem and not on the algorithm; a
lower bound must apply to all algorithms allowed within the model that
solve the problem, not just the one we designed.

2This book takes a billion as thousand million, and a trillion as a thousand billion.
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Long Pause Is a lower bound on the worst cost of the problem the same as the best
cost of the algorithm?

For example, consider the dishwashing problem again. Suppose our
model of the problem measures effort by the number of dishes we wash.
If washing a dish is only a constant times more work than merely handling
it then we can find a lower bound on the number of times we handle a
dish. Since we must at least handle each dish, this in turn gives us a lower
bound on the overall amount of work necessary to solve the problem.

For every problem and model there are an infinite number of algorithms
allowed within the model that will solve the problem. This is true even
though there are only a finite number of operations to choose from and
each algorithm is composed of only a finite number of them. Each of these
algorithms has a resource usage graph. Since all of the algorithms halt,
each of these graphs has a highest point-its worst cost. If the worst cost
for each graph is at least L, then L is a lower bound on the problem's
worst cost (see figure 1.7). Thus, for example, zero is always a lower
bound on the computational cost of any problem. The lower bound on
the worst cost is the lowest, over all such graphs, of the highest points.

fA f13 fc

In In In

Figure 1.7 A possible lower bound on the worst cost

Long Pause Is this the same as the largest of all lower bounds on the worst cost of the
problem?

Lower bounds are harder to find than upper bounds because we can find
an upper bound by analyzing any algorithm allowed within the model, but
to find a lower bound we have to analyze all algorithms allowed within the
model. An upper bound is a measure of how bad a particular algorithm
can be; a lower bound is a measure of how hard a particular problem is.
Lower bounds are like the laws of thermodynamics, they can tell us that a
perpetual motion machine is not possible, but they cannot help us build a
jet engine.
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i o

HODGES DELIGHTED IN FINDING HOLES
IN LOWER BOUND ARGUMENTS

To define the lower bound on the worst cost algebraically, suppose that
within the model M, AM is the set of all algorithms each of which solve
the problem P. Then

the lower bound on the worst cost of P = min {max fA(I)}

We can also define the lower bound on the average cost of a problem and,
similarly, on the best cost, and so on.

Very Long Pause Does every problem have a best (that is, largest) lower bound?

Now we see exactly what the model does for us: Choosing a model is
equivalent to choosing the set of algorithms that solve the problem. In fig-
ure 1.8 P is a problem. For each problem there are an infinite number of
models M. For each model there are an infinite number of algorithms A.
For each algorithm there are an infinite number of resource measures f.
For each resource measure there are an infinite number of complexity mea-
sures C (best, worst, average, and so on). And, of course, there are an
infinite number of problems, each of which has an infinite number of sizes.

Having found upper and lower bounds, we compare them to decide
whether it's worthwhile to look for a more efficient solution than the one
we already have. In figure 1.9 suppose that f(n) is the (unknown) worst
cost of P. Suppose we have some algorithm A within M that solves P.
Let g(n) be an upper bound on the worst cost of A. Since A solves P
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P

Mi M/2 ...... M",

A1  A 2  A,,

f •f2 ------ f.

C1 C 2  .... C. 0

Figure 1.8 The five dimensions of the continent of analysis

and g(n) is an upper bound on A, it is also an upper bound on P. Finally,
suppose h(n) is a lower bound on the worst cost of P. Note that g(n) >
f(n) > h(n) only after some point. We only require the inequalities to
hold for all inputs larger than some fixed size.

cost g(n) an upper bound

1 (n) exact cost

h(n) a lower bound

n

Figure 1.9 Bounds on the worst cost of a problem

If beyond some point g (n) - h (n) < c, for some constant c, then there
is no point looking for a better algorithm; up to a constant, A is as good
a solution as is possible within M. Within M, A is worst case optimal
for p. 3 If g(n) - h(n) • c for any c, even for large n, but beyond some
point g(n)/h(n) < c, for some non-zero constant c then within M, A is
worst case asymptotically optimal for P.

3 Optimality depends on the model chosen; within a different model, a previously "optimal"
algorithm may be bad since a different model may emphasize different resources or it may
allow different operations.
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Pause So a lower bound can tell us whether an algorithm is optimal; can it tell
us whether an algorithm is not optimal?

Good lower bounds are usually hard to derive, so why bother with
them? First, a lower bound can tell us whether an algorithm is optimal,
or asymptotically optimal. (A lower bound cannot tell us whether an
algorithm is not optimal unless we can show that it is the best possible
lower bound. ) Second, trying to prove a lower bound-work that must
be done-helps us concentrate on what is actually done, and whether it's
really necessary. Sometimes we then design improved algorithms because
we understand the problem better. Finally, if we happen to derive a lower
bound guaranteeing that within our present model no algorithm can do
a reasonable job, then it's time to start thinking about whether we really
want to solve the problem this particular way. Is there, perhaps, some
way to relax the problem or to allow our algorithms more powerful oper-
ations by restricting the kinds of inputs we can expect? This observation
cuts right to the heart of contemporary analysis; we will rejoin this train of
thought at the end of section 1.9.

Returning to Hanoi we see that 2n - 1 is a lower bound on the problem
since we must move every disk but the biggest at least twice (why?), and
we must move the biggest at least once. But, as we see in table 1.2 [p. 20],
this is not very close to our upper bound of 2' - 1 when n gets large. What
is to blame for the huge difference? A weak lower bound? Or an inefficient
algorithm?

Fortunately a stronger lower bound isn't that hard to find. As we've
seen, any algorithm solving the problem must move the biggest disk from
A to C and, whenever it does, all n - 1 other disks must be stacked neatly
on B. But moving those disks from A to B using C as a temporary staging
area is at least as hard as solving the problem with n - 1 disks. (Since the
biggest disk is bigger than all the others it is effectively invisible to them.)
Thus, solving an n-disk problem is at least as hard as solving an (n - 1)-
disk problem. That is, if f(n) is the number of disk moves necessary to
solve an n-disk Hanoi then f(n) > f(n - 1). In short, f must be non-
decreasing. And this is true regardless of the algorithm used.

Well, you yawn, this isn't news; surely every problem instance is at least
as hard as a smaller instance of the same problem. As we shall discover in
chapter six, this is plausible-but wrong. Further, f is more than just non-
decreasing since there is more work that any algorithm solving an n-disk
Hanoi must do: namely, it must move the biggest disk and it must move
all those n - 1 disks from B to C (on top of the biggest disk). And,
again, the n - 1 smaller disks can't see the biggest disk. Thus, it must be
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that f(1) = 1 and f(n) > 2f(n - 1) + 1. This forces f(n) to be at least
2n - 1. Thus, HAoi is optimal (within the model chosen).

Ps Use induction to show that f(n) > 2n - 1.

By the way, if you're worried about the world ending soon, 264 =

18,446,744,073,709,551,616. If the priests can move one disk a second
that's about five hundred and eighty-five billion years (not counting leap
years). Let's put this ridiculous number in perspective. The earth is less
than five billion years old, and the whole universe is less than fifteen. Fif-
teen billion years is roughly 4.7 x 1016 seconds. A human lifetime is about
2.2 x 109 seconds. A week is about 6 x 105 seconds. A day is about 86 kilo-
seconds (8.6 x 104 seconds). Any program taking more than 104 seconds
(about three hours) is usually judged too slow. Fast computers can per-
form about one billion operations per second. If a computer could move
a disk in a billionth of a second, then the sixty-four-disk Hanoi problem
would still take about five hundred and eighty-five years.

1.5 Now What?
Which, if we find outweighs ability,

What do we then but draw anew the model
In fewer offices, or at last desist

To build at all?
William Shakespeare, Henry IV part 2, I/1

The sequence of steps outlined in the previous four sections is lovely in
theory but, as that sixteenth-century analyst points out, this sequence is
often succeeded by the following algorithm, the execution of which is
(alas!) beyond the scope of this, and every, book.

If the upper and lower bounds match,
then stop,
else if they're close enough or the problem isn't that important,

then stop,
else if the model focuses on the wrong thing,

then restate it,
else if the algorithm is too fat,

then generate a slimmer algorithm,
else if the lower bound is too weak,

then generate a stronger lower bound.
Repeat to perfection or exhaustion.

Opinion is divided on whether this algorithm terminates.
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1.6 Napkin Mathematics

The advanced reader who skips parts that
appear to him too elementary may miss more

than the less advanced reader who skips
parts that appear to him too complex.

George P61ya,
Mathematics and Plausible Reasoning:

Induction and Analogy in Mathematics

When theorists go to restaurants they invariably talk mathematics. Naturally
they also try to write mathematics. But napkins are small, so they have to
ignore lots of details in their calculations. We will often want to do much
the same thing to get a ballpark figure for the run time of an algorithm. For
example, we've seen that 210 is about 103 (let's write this as 210 - 103)
with an error of less than three percent. If an algorithm's run time is 2 n,

how long will it run when n is large? For instance, earlier we wanted to
know how many digits there are in a petabyte (250 bytes). To solve this
problem easily we need to recall the idea of a logarithm.

The base x logarithm of y is the power to which we must raise x to
get y. Thus,

log, y = z xz = y =# 2l0g, y = y

For example, the Richter scale for measuring earthquakes, named after the
American geologist Charles Richter, is a base ten logarithmic scale. Thus,
an earthquake measuring eight on the Richter scale isn't twice as bad as
an earthquake measuring four on the scale, it's ten thousand times as bad.

Because digital computers are binary, base two logarithms are special.
Let's agree to use "Ig" to mean the base two logarithm, log 2 . See table 1.3.
Also, it is convenient to define the zeroth power of any number (includ-
ing zero) to be one: that is, Vx, x- = 1. For example, it would be
nice if 20 = 1 because then HANoi would do nothing when given no disks
(20 - 1 = 0), as it should. Consequently, lg 1 = 0.

n 1 2 3 4 5 6 7 8 9 10

lgn 0 1 1.584 2 2.321 2.584 2.807 3 3.169 3.321

Table 1.3 Base two logarithms (to three decimal places)

Ps What's Ig 16?
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The neat thing about logarithms is that instead of multiplying or dividing
two numbers we just have to add or subtract their logs since

logx(rs)=logx r+logx s and logx (r) = log, r - logs s

Pause Does this make sense for the special case where r and s are integers?

So, for example, in table 1.3,

lg6 = lg(2 x 3) = lg2 +±g3 = 1 +lg3

By extension, the logarithm of a power is simple:

lgab = blga

Now, if 2n - 10m then lg2n = n -g• 1g0m = mlgl10 - 3.321m. There-
fore, m - 0.301n. So, for example, 250 is about 1015. Thus, a petabyte
number of seconds is roughly one forty-seventh of the age of the universe.

Pause Can you estimate the error of this estimate?

2n is a fast-growing function. Here is another fast-growing function
called the factorial function:

n!=nx(n-1) x...x2xl

If we have two algorithms whose costs grow like n! and 2n, which should
we use? Looking at table 1.4 we might guess that n! is bigger than 2n and
less than 22n. But we don't really know. If we had calculated only the
first three values we might have thought that n! < 2n; how do we know
that if we continue the table for a few more values we won't find that
n! > 2 2n? It could be that once n gets big enough, n! is less than both
or n! is greater than both. So far, the only thing we're sure of is that 2n

is slower than 2 2n. This teaches us that we can't compare functions based
only on their values for small n.

n 1 2 3 4 5 6 7 8
n! 1 2 6 24 120 720 5040 40320

2n 2 4 8 16 32 64 128 256
2 2n 4 16 64 256 1024 4096 16384 65536

Table 1.4 Factorials versus powers of two
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Although n! < 22n for n < 9, n! grows quite fast. If we increase n to
n + 1 then n! increases by a factor of n + 1 but 2 2n only increases by a
factor of 4. The appropriate recurrence for 2 2n is

f(n) = {4 n = 1

4f(n-1) n > 1

But the recurrence for n! is

f(n)={ nf(n-1) n > 1

Intuitively, n! should eventually become larger than 2 2n. Let's try to prove
that.

Ps Any idea how?

Well, we could prove this by induction, but it's not clear what the base
case should be (any idea?). Instead, let's find a use for the log function.
First, n! > 22n if and only if lgn! > lg2 2 n = 2n. But

n n
n!= n x (n-i) x...x x × 1 x...x2xl

n n n

> - x - x... - x 1 x...xlxl
- 2 2 2

= (2)n/2

Therefore,

lgn! > lg(n)n12= (n) 1g(n)

So we only need show that this is eventually bigger than 2n and we're
done. (n) 1g (n)-> 2n

=lg(n) > 42 4

n > 32

So we're sure that n! > 222n once n > 32.

P Use induction to prove that n! > 2 2n for n > 9.
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Factorials occur when we arrange the elements of a set; n! is the number
of ways of arranging n people in a row. Factorials also occur when we
select elements from a set. For example, the number of ways of selecting
m things from n things is n!/(m!(n - m)!); a function that we will meet
several times in our trek. This function has a special notation (pronounced
"n choose m"):

(n) n!
In m!(n - m)!

Because of the selection interpretation we sometimes want to talk about
the factorial of zero, and also about selecting more things than we have
to select from. To make the definitions uniform even for these cases let's
define 0! to be 1 and define (n) to be 0 if m > n.

Factorials make power expansions of two variables easy. For example,
multiplying out we see that

(x+y)°=l, (x+y)l=x+y, and(x+y)2 =x 2 +2xy+y 2

These expansions are special cases of the binomial theorem ("binomial"
means "two terms"):

(X +.y)n = (n)Xn-0-yO_ + (n)Xn--y + (n)xn.-2y2 ±...

n( 1) xlyn- + (nl) X 0Y(n n n

= xn + nxnly± + n(n -2 1) xn_ 2y 2 + +. nxyn- 1 + yn

Instead of laboriously multiplying out, we can use the binomial theorem
to find that

(x + y)3 = X3 + 3x 2y + 3xy 2 + y3

(X + y) 4 = X4 + 4x 3 y + 6x 2 y 2 + 4xy 3 + y 4 , and

(x + y) 5 = X5 + 5x 4 y + 10x 3y 2 + 10x 2 y 3 + 5xy 4 + y5

Although used since ancient times, this neat theorem is credited to the
English mathematician Isaac Newton, who generalized it while he was an
undergraduate at Cambridge in 1665.

C00

Here is another toy problem. The greatest European mathematician of
the middle ages, the Italian Leonardo Pisano Bigollo, nicknamed, in the
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present day, Fibonacci ("fib-oh-nah-chee"), posed the following problem
in 1202:

Suppose you have a pair of rabbits and suppose every month
each pair bears a new pair that from the second month on
becomes productive. How many pairs of rabbits will you have
in a year?

This is probably the first ever recursively defined function (although
Fibonacci lacked the formalism we have today to state it as a recurrence).
Let f(n) be the number of pairs of rabbits alive at month n. The recur-
rence giving the value of f(n) is

1 n=0
f (n) = 1 n =1

f f(n-1)+f(n-2) n > 1

From this recurrence it's easy to write a recursive algorithm finding f (n);
see algorithm 1.2. Table 1. 5 lists the first few fibonacci numbers.

FIBONACCI ( n )
{ Find the nth Fibonacci number where n > 0. }

if n<1
then return 1
else return FIBONACCI ( n - 1) + FIBONACCI ( n - 2)

Algorithm 1.2

n 0 1 2 3 4 5 6 7 8

f(n) 1 1 2 3 5 8 13 21 34

n 9 10 11 12 13 14 15 16 17

f(n) 55 89 144 233 377 610 987 1597 2584

Table 1.5 Fibonacci numbers

Although elegant, this recursive algorithm is a bad way to compute the
fibonacci numbers since we will compute many numbers many times. For
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example, as figure 1.10 shows, we compute f(2) three times when find-
ing f(5). Instead we can write a prosaic, but more efficient, iterative algo-
rithm to do the same thing; see algorithm 1.3. This algorithm does work
proportional to 3n.

f(5)

f(4) f(3)

f(3) f(2) f(2) f(1)

f(2) f(1) f(1) f(0) f(1) f(0)

f(1) f(0)
Figure 1.10 Evaluating the fifth fibonacci number recursively

Now how much work does algorithm 1.2 do? This is a surprisingly
difficult question, considering how simple the algorithm is. To answer it
we will have to develop some more mathematics.

FIBONACCI ( n )
{ Find the nth Fibonacci number where n > 0. }

past +- 1 ; previous +- 1 ; present *- 1
for i from 2 to n

past +--previous ; previous +--present
present +- previous + past

return present

Algorithm 1.3

To begin with, how much work does the code fragment shown in fig-
ure 1.11 do as a function of n? To solve this problem we need a way to
manipulate sums of numbers.
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sum +- 0 ; inc +- 0

for i from 1 to n
for j from 1 to i

sum -- sum + inc

inc +- inc + 1

Figure 1.11 A double summation

Let's represent the sum of the n real numbers rl, r 2 , r3 , .... rn, by
the expression

n

Sri
i=1

That is,
n

Z r, = ri + r 2 + r 3 + ... + rn
i=1

E is the Greek letter capital sigma, their form of capital S, and it stands for
"the sum of' (the integral sign f is also an S but it stands for a different
kind of sum). Read the expression " n ri" as "the sum of ri where i
ranges from 1 to n." The sum variable, i, can be any integer variable; so,
for example,

n n n n n

- ri = -rj = - rk rl = -r
i=1 j=l k=l 1=1 m=l

Also, if the terms are all positive we may add them in any way whatsoever.
(This is not true if the numbers can be positive and negative and there are
an infinite number of them.) So, for example,

100 j-1 1005 r = ri + 1- ri
ir1 i=1 i=j

j k+3 100

- ri+ + ri+ 5 ri
i=1 i=j+1 i=k+4

E 5 ri + E ri

i even,1<i<100 i odd,1<i<100

50 49E3 r 2i + E r 2i+1

i=1 i=0
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Finally, let's agree that the value of a sum over an empty range is zero.
Thus, for example,

n
m > n ; -ri= 0

i=m

Now let's calculate the number of assignments (or equivalently, the
number of additions plus two) done in the code fragment in figure 1.11
and use that as an estimate of the work the code fragment does.

The number of assignments done is two plus

n

n-(assignments done on repetition i of outer loop)
i=1

The number of assignments done on repetition i of the outer loop is

i

S-(assignments done on repetition j of inner loop for fixed i)
j=1

And for every j, only two assignments are done on repetition j of the
inner loop for a fixed i. Thus, the total number of assignments done is
two plus

The value of the inner sum is just 2i. Therefore, the value of the whole
sum is

n

Y 2i (=2+4+6+...+2n)
i=1

Let's do a little quick napkining to estimate this sum. The largest term
is the last term (2n) and the smallest term is the first term (2). Since
there are n terms in all, the sum is no larger than 2n 2 and no smaller
than 2n.

We can refine this estimate by observing that the terms are increasing
linearly (like on a ramp; see figure 1.12). Thus, the sum will be near
the average term times the number of terms, since for each number below
the average there is another above the average by the same amount. The
average value is near n and there are n terms in all, so the sum should
be near n 2 . (Warning! This argument will not work unless the terms are
linearly increasing. (Why?))

n

Ps Use the same idea to estimate -(ai + b).
i=1
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S..........

n/2- k n/2 n/2 + k

Figure 1.12 Thinking of a linear function like a see-saw

n 2 is a good estimate of the sum, but by rearranging the sum we can
get an exact answer. Since every term is doubled, the sum is the same as
double the sum of 1+2+3+.-.+n. Thus,

n n

2i = 21i
i=1 i=1

= 2(1+2+3+...+n)

= (1+2+3+...+n)+(1+2+3+...+n)

1 + 2 + 3 + + n
=+

n + (n-i) + (n-2) + + 1

= n(n + 1)

It's depressing to us humans but the eighteenth-century German mathe-
matician Carl Friedrich Gauss discovered this insight before he was ten.
To keep the class busy a teacher asked the students to find the sum of
a large number of consecutive numbers. Gauss found the above pairing
trick and solved what should have been an hour-long question in minutes.
Gauss was annoyingly clever.

So now we know that the code fragment in figure 1.11 performs exactly
n (n + 1) +2 assignments. Our napkin estimate of n 2 is off by less than ten
percent for n as small as twelve, and it gets even better as n increases.

000

Mathematics is a search for pattern. Often we have a sum and we want
to know its value for large n without doing a lot of calculation. This is
only possible if there is some pattern in the terms of the sum (and if we
can find the pattern). On the general principle that we can only express
things we don't know in terms of things we do know, we have:
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The subtract-and-guess or divide-and-guess strategy: To find the
value of the sum f, pick a known function g and find a pattern
in the terms f(n) - g(n) or f(n)/g(n).

Often it's best to let g be a sum as well, and sometimes we don't even
have to know the value of this new sum. For example, consider f(n)

i=1 i. There are many things we could try to divide by. Table 1.6 shows
division by gi(n) = n (= En 1) and by g2 (n) = f(n - 1) (seems like a
trick!). We can now find f from either of the guessed patterns,

f(n) on+r1 f (n) = +
gi(n) 2 g2(n) n -

n 1 2 3 4 5 6 7 8

f(n) 1 3 6 10 15 21 28 36

gi(n) 1 2 3 4 5 6 7 8

f(n)/gi(n) 2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2

g2(n) 0 1 3 6 10 15 21 28

f(n)/g2 (n) 3/1 4/2 5/3 6/4 7/5 8/6 9/7

Table 1.6 How to guess a sum

n

PauseWhat's Zi 2 ? (Hint: Try the sum we just found.)
i=1

Now, finally, we can get back to Fibonacci and his rabbits. How much
work does the recursive FIBONACCI (algorithm 1.2 [p. 31]) do? Let's use
additions to estimate the algorithm's cost. After a little thought we see that
this cost is proportional to the fibonacci numbers themselves!

P Why is this true? (Hint: See figure 1.10 [p. 321.)

So now the question is: how fast do the fibonacci numbers grow?
Applying the divide and guess strategy, table 1.7 lists the ratio of f(n) to
f(n - 1) to three decimal places. Looking at the table we might guess that
f(n) - 1.618 x f(n - 1) as n gets large. If that's true then f(n) - 1.618n.
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n 1 2 3 4 5 6 7

f(n) 1 2 3 5 8 13 21

f(n)/f(n-1) 1 2 1.5 1.666 1.625 1.615 1.619

n 8 9 10 11 12 13 14

f(n) 34 55 89 144 233 377 610

f(n)/f(n - 1) 1.617 1.618 1.617 1.618 1.618 1.618 1.618

Table 1.7 Ratio of fibonacci numbers

P Suppose we didn't think of f(n)/f(n - 1). Compute a table of f(n)/2n

and f(n)/1.5n. How can such tables help us pin down f(n)?

Suppose f(n)/f(n - 1) is really tending to a fixed number as n tends

to infinity. Call it x. What's x? Well, from the recurrence we have that

f(n) = f(n - 1) + f(n - 2)

Therefore, if "-*" stands for "tends to" then for large n

f(n) f(n - 1) f(n - 2)
-=_ + ++x

f(n - 2) f(n - 2) f(n - 2)

But, for large n

f(n)_ f(n) f(n-1) 2
f(n - 2) - f(n - 1) f(n - 2)

Therefore if x exists, it must be that

x2-x-1--*0

Setting this quadratic to zero and solving we see that

2-- =-1.618... or -0.618...2

Aha! So if x exists then it must be 1.618.... The number 1.618... has
a special symbol, 0 (this is the Greek letter phi; think of it as standing
for the F in Fibonacci, although that isn't why it was first chosen). The
second number is just 1 - 0 (why is this?). Of these two possible solutions
only the first is bigger than 1. Therefore as n increases this term will
predominate. (Why?) Therefore for some constant r, f(n) - ron. It is
possible to show that r = 1/v5 - 0.447.
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If the first values of f were I and 0 instead of both 1 (that is, if f (0) = 1
and f(1) = 0), then f(n) = 0" for all n. (Why?) But because of the
small change in f(1) all the later values of f are less than half of On. This
enormous sensitivity to small changes in boundary values is characteristic
of fast-growing functions. f(n), 2n, and n!, are all fast-growing func-
tions; in the next section we will develop notation and tools to distinguish
between them.

1.7 Growth Rates

If your wish is to become really a man of
science, and not merely a petty experimentalist,

I should advise you to apply to every branch
of natural philosophy, including mathematics.

Mary Shelley, Frankenstein

Now let's make the idea of tossing out constants more precise so that we
can do some napkin math on our algorithms. Two functions of n have dif-
ferent growth rates if as n goes to infinity their ratio either goes to infinity
or goes to zero. If their ratio stays near a non-zero constant then they
are asymptotically the same function. Why is this a reasonable view of
functions?

The tapestry that's been woven so far gives center place to determining
the resource cost of each algorithm as accurately as possible. This is not
always easy. To make an analysis as accurate as possible we must include
details about the machine the algorithm is to be run on and the language
it is to be written in. The more details we include, the more accurate the
result becomes, but also the less general the result becomes. By tying the
analysis closely to one machine and language we can say little about the
speed of the algorithm on a different machine or in a different language.

The second obstacle to complete exactness is that we sometimes develop
algorithms whose resource cost is complicated. Sometimes this function
is so complicated that it could conceivably take as long to compute the
resource cost as it takes to run the algorithm! For example, suppose an
algorithm's resource cost is the sum of the first m terms of the sum

v/-n+V + n+ ± ;n + n+VH±...

The simplest way to evaluate this sum appears to be to evaluate each term
and add them! We want to say something about the cost of an algorithm
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even if we can't express its cost in a simple form. To do that we com-
pare the complicated function to a collection of functions of known growth
rates.

Finally, sometimes when we analyze an algorithm we aren't all that inter-
ested in the exact time the algorithm takes to run. Often we only want to
compare two algorithms for the same problem. The thing that makes one
algorithm more desirable than another is its growth rate relative to the other
algorithm's growth rate. Given two algorithms with worst costs of 2'n and
n, respectively, it's clear which to pick even without thinking of anything
else. Even if the 2 n! algorithm has a million times less overhead than the
n algorithm, as soon as n grows to four or more the n algorithm will far
outperform the 2 n! one in the worst case because 2 n! grows so much more
rapidly than n. (See table 1.8. )

n 1 2 3 4 5 6 7 8 9 10

n 1 1 1 1 1 1 1 1 1 2
n 2  1 1 1 2 2 2 2 2 2 3

2n 1 1 1 2 2 2 3 3 3 4

n! 1 1 1 2 3 3 4 5 6 7
2n2 1 2 3 5 8 11 15 20 25 31

22" 1 2 3 5 10 20 39 78 155 309

2n! 1 1 2 8 37 217 1518 12138 109238 1092378

Table 1.8 Functions in terms of the number of decimal digits

Table 1.8 lists some functions in terms of the number of decimal digits
needed to express each value-for example, 5! = 120 needs three deci-
mal digits. (The values in the table are near to the base ten log of the
function values for each n. ) Although all the functions go to infinity, dif-
ferent functions appear to go to infinity at different rates. For example,
2n! grows so rapidly that 216! has 6,298,387,349,264 decimal digits! Do all
these functions have different growth rates? If we take the ratio of any two
of them, does the ratio either go to zero or to infinity? Or does it stay near
a non-zero constant?

Well let's first try to answer this for n and n 2. As we saw in the problem
of squaring n (page 3) n 2 grows faster than n. n 2 also grows faster
than 3n (see figure 1.13). Is there a constant so large that if we multiply n
by it, the resulting function is always larger than n 2?

Paus Can you prove this one way or the other?
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3n

2n

n

Figure 1.13 Every quadratic beats all linear functions

Instead of trying larger and larger constants suppose there are con-
stants r and s such that n' < rn + s. Then n < r + s/n. But, as n tends
to infinity, s/n tends to zero. Thus n is less than something a little bigger
than r. But this is silly since n is increasing to infinity. Therefore, there
can be no such constants. This is a proof by contradiction. The idea is to
assume the opposite of what we want to prove, then show that this leads
to a contradictory statement; thus what we want to prove cannot be false,
and so must be true. (This assumes that every statement is either true or
false, but, as we see in chapter seven, when looked at closely there are
usually shades of gray. )

We can even tell when nz first becomes bigger than rn + s. It's bigger
for all n larger than the positive root of the quadratic equation n 2 - rn - s.
That is, for all n larger than (r + -/-r2 + 4s)/2.

Pause Check that this value makes n 2 - rn - s zero. Must the quadratic stay
positive after this point?

So a bare n 2 eventually grows larger than any linear function of n. Also,
given another quadratic function, say rn 2 + sn + t, we can always find
a constant u such that for all n beyond some point u n2 is bigger than
rnn2 + sn + t (for example, u = r + s + t). Thus, neither changing the
constant multiplying the n 2 term nor adding terms involving only n (or
constants) affects the growth rate, we still go to infinity at the same rate
as n 2 . So n and n 2 have different growth rates.

Now we can order some of the functions in table 1.8. Since n 2 grows
faster than n, then 2n' grows faster than 2n (exponentiate), n 4 grows
faster than n 2 (square), n grows faster than flu (take square roots), and
2 lg n grows no slower than lg n (take logs). Also, on page 29 we saw
that n! grows faster than 2n so now we know five more things:
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"* n!! grows faster than 2 n! (take factorials),

" 2n! grows faster than 22n (exponentiate),

"* n !2 grows faster than 2 2n (square),

"* v grows faster than /20 (take square roots), and

"* ig n! grows no slower than n (take logs).

And so on. Every relationship we find gives us many more by squaring,
taking square roots, exponentiating, taking logarithms, or taking factorials.

Long Pause If f grows faster than g, then we can say that f 2 grows faster than g 2 and
2f grows faster than 2 g. Can we say that V7f grows faster than /g- and
lg f grows faster than ig g?

We can go on to order the following functions by their growth rates:

lglgn lgn lg 2n n1 /1 ° -/n n nlgn n 2  2n n! 22n 2n!

P Does n 1/1° really grow faster than lg 2 n? After all, even when n is a trillion

n 111° is only about 16 but lg 2 n is about 1600 (recall that 1012 - 40).

Limits

To prove things about the growth rates of algorithms we need some tools
to handle speed. Fortunately there is already a well-developed collection
of tools to find growth rates of functions-the differential calculus ., It's
impossible to compress into a few pages more than two thousand years'
worth of ideas about estimating speed. So we will have to skim.

The calculus had been brewing for a long time but it was brought to
a boil three centuries ago by Isaac Newton in England and independently
by Gottfried Leibniz ("libe-nits") in Germany and it has been enormously
useful ever since. Besides the calculus, Newton is famous for many funda-
mental advances in mathematics, physics, and astronomy; he is probably
the most influential mathematician ever to have lived.

The calculus is built around the idea of a limit of a function. The state-
ment

lim f(x) = s
x--r

is shorthand for the intuitive idea: "f(x) approaches s as x approaches r"
but since f(x) also approaches s - 1 (as well as all other values less

4
"You are only as rich as the houses you burgle." George Alec Effinger, Isaac Asimov's Science

Fiction Magazine, July, 1985.
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than s), and since f may not be defined at r, we need to be more careful
and say that "we can keep f(x) as close to s as we want by keeping x
sufficiently close to, but not necessarily equal to, r." Intuitively, no matter
how small someone requires the difference between the function value and
the limit value to be, we can always find a point near r satisfying that
condition (see figure 1.14).

r-u r r+u

S I I
9999999af(x)

S-t s s+t

Figure 1.14 limx r f(x) = s - for every t there is a suitable u

Why the distinction between f(x) near r and f(r)? Why not just
find f(r) and forget about limits? Well, for one thing f may not be defined
at r. For example, people can increase their "reading speed" by skipping
words. People who can't read are skipping everything. Does this mean
they have an infinite reading speed?

In analysis we want to know how functions behave as their integer argu-
ments increase to infinity. Here's how to define the limit in that case:

lim f(n)=r €== Vs>0 3c>0: n>c==r+s> f(n)>r-s
n-- oo

(":" means "such that"). In words, as n tends to infinity the limit of f(n)
is r if, no matter how close we want f(n) to be to r (that is, no matter
how small s is), we can always find a big enough n making it that close.

One limit is so important that it has its own name:

eX = nlim 1 + x)n

X 1  X 2  X 3  X 4

x 2  x 3  x 4

2 +-+T4 +...
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The number e = 1+1 1+ 1 +-+ ... =2.71828... is so important 5 that

base e logarithms have a special symbol, ln.

Order Notation

We use order notation to classify functions by their growth rates. Table 1.9
lists the order notations we use in this book. Let's look at one particular
one ("0") to see how they all work.

Say that f is Mean that f is Write If
small oh g slower than g f = o(g) lim f(n)/g(n) = 0

n --

oh g no faster than g f = 0(g) 3c, r > 0 : Vn > c,
f(n) < rg(n)

theta g about as fast as g f = E(g) f = 0(g) and g = O(f)

about g as fast as g f , g lim f(n)/g(n) = 1
n

omega g no slower than g f = Q(g) g = 0(f)

Table 1.9 Order notations

Suppose your keyboard has a broken "<" key. Wishing to continue
work you decide to use the two keys "= L" in its place. But, because

"=" has such strong associations with equality, after a few uses of "=L" in

such relations as 1 = L (3) and 3 = L(5) you naturally start thinking of L as
a separate function.

We can think of L(5) as an unspecified number less than 5. This makes it

possible to do "arithmetic" with this function. For example, 1 + L(5) = L(6),
L(3) + L(1) = L(4), and L(3)L(4) = L(12). But this is not the arithmetic
we're used to. For example, we cannot say that L(5) - L(3) = L(2) since

the indeterminacy about what is really being subtracted could make this

almost any number.

Ps How about L(6)/L(3)?

More generally, we can think of L as a set of functions (and not just

numbers) and thus, L(g) would represent an unspecified function f and
the only thing we know (or care) about f is that f(n) is less than g(n)
for each n. To use this idea in analysis let's add two more degrees of

5 Here's a mnemonic sentence to remember the first six digits of e (count the letters): "He
studied a treatise on calculus." Ivan Niven, Maxima and Minima Without Calculus.
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freedom. Since we don't care how a function behaves for small n, we
allow the inequality to possibly fail when n is small; we only require that
it hold for all n larger than some constant. Also, we only care about
growth rates, so the function may be multiplied by any constant.

A function f is 0 of g if there are positive constants r and c such that
f(n) :_ rg(n) for all n bigger than c. We write this relation as: f = 0(g),
and the intuition is that f goes to infinity no faster than g.

There are four important points to remember about order notations.
First, the following analogy helps to keep the notations in table 1.9
straight. o is like "<," 0 is like "<," e is like "roughly equal," Z is
like "=," and Q is like ">." Since 0 is like "_<" it does not say how good
an algorithm can be, it can only say how bad the algorithm can possibly
get. For example, suppose algorithm A is 0(n) and algorithm B is 0(n 2).
Is A better than B? Perhaps; but perhaps neither algorithm has been
sufficiently analyzed and A is in fact 0(n) while B is really e(lg n).

Second, keep in mind that the 0 notation, and all other notations in
table 1.9, indicate a function's speed relative to some other function and
not its size. Thus, 5n - 0(n 2) (for example, take r = 5, c = 1) since
n2 grows faster than n, even though 5n is bigger than n 2 when n < 5.
Further, for all s and t, sn + t = 0(n 2 ) (for example, take r = s + t,
c = 1). Also, for all s, t, and u, sn 2 + tn + u = O(n 2 ) (for example,
take r = s + t + u, c = 1). Finally, n 2 $ 0(n), as we've already seen
(page 40).

Third, n = 0(n 2 ) and n 2 = 0(n 2), but we cannot write 0(n) = 0(n 2).
Thus, we cannot treat 0 like a normal function. Similarly, in the previous
example, we can say L(5) = L(6), but not L(6) = L(5); the "equations" are
one-way. 0(g) is the set of all functions bounded above by some constant
times g. Instead of saying that f = 0(g) we could say that f is in the
set 0(g). But it's a little clumsier, so we won't. We can extend this set
interpretation idea to the other order notations as well.

Finally, for the definitions in table 1.9 recall that, by convention, func-
tions are by default positive and non-decreasing. We usually only use func-
tions to measure the resource cost of an algorithm, and this will never be
negative nor will it decrease as the input increases in size. (This last is not
true in general; the performance of algorithms that depend on numerical
properties of the input may go up or down as the input increases in size,
as we shall see in chapter six.)

Some growth rates occur so often that they have special names (see
table 1.10 and figure 1.15). Note that if the resource cost of an algorithm
is logarithmic then it only increases by a constant when n doubles; if it's
linear, it doubles when n doubles; if it's quadratic, it quadruples when n
doubles; if it's exponential, it squares when n doubles!
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if f is say that f is if f is say that f is

O(1) constant E(nr), 1 < r < 2 subquadratic

EO(lg n) logarithmic E)(n 2) quadratic

E(lgc n), c > 1 polylogarithmic E(n 3) cubic

e(nr),o < r < 1 sublinear e(nC),c > 1 polynomial

E(n) linear E(rn), r > 1 exponential

Table 1.10 Some special orders

exponential quadratic

cost

S~logarithmic

constant

size
Figure 1.15 The way things grow

Manipulating Order Notation

Now let's use limits to find some orders. First, let's show that

lir f(n) r== f = O(g)
n-- g(n)

This is a useful way to prove order relations. It's easier to find limits of
ratios than to find bounding constants out of thin air.
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From the definition

lim fn) _r

f(n)

.=4-> Vs>O 3c>O: Vn>c, r+s> -- )>r-s
g(n)

SVs >0 Dc >0: Vn > c, (r + s)g(n) > f(n)

Since this is true for all positive s, it is true for s = 1 (say). Thus,

3c>0: Vn > c, f(n) < (r + 1)g(n)

Therefore,
3c, rl > 0 : Vn > c, f(n) • rig(n)

Thus, f = 0(g).

Pause Show that lir f(n)/g(n) = r > 0 ==f =E (g).

We can use this result to show that n - 0(n2 ) without messing about
with bounding constants:

n1
limn = 0rn 1n---o n-2 n---oc -n

Therefore, not only is n = 0(n 2) (that is, n is no faster than n 2), but
more precisely, n = o(n 2) (that is, n is strictly slower than n 2). Further,
we can use the same result to show that rn + s = o(n 2 ) for all r and s.
Thus, every quadratic function is faster than any linear function.

Pause Show that n = o(n 2) implies that n 2 0 0(n).

Differentiation

Now let's look at ways to measure the growth rates of functions. If f is
a function of x and we change x by some amount, r, then f changes
value from f(x) to f(x + r). If f is "smooth" and r is "small" then the
size of this change is a good estimate of the speed with which f changes.
The derivative of f at x is

f'(x) = lim f(x + r) f (x)
r-•O r

To find the derivative we differentiate the function. This limit, if it exists,
measures f's growth rate near x. The steeper f is near x the faster it's
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increasing and the larger is its derivative, f'. The derivative is also denoted
df/dx or d/dx of f since it's the limit of a difference in x divided into
the corresponding difference in f (taking d for "difference").

It is possible to show that

d Xrd e=X d--X r = rxr-1=e and dn =I-
-x-e =e ad i-l nx -x' d-x dx x

So the derivative of a polynomial grows slower than the polynomial. But
curious things happen when the function is exponential or logarithmic; if
we have an exponential, the only way to get rid of it is to hit it over the
head with a log. Finally,

d d (lnx\ = 1 d lnxlx X= n - ln -
dx =d-x \n--2] ln2 dx xln2

P Show that logx y = log, y/ logz x by using y = zlogY = xlogx y and

X= Z log, x

coo
Now suppose we have two algorithms with growth rates of lg n and /-nT.
Which grows faster? We get nowhere if we try to find limn--+ v/-/ Ig n
because both functions tend to infinity and nothing cancels. The limit
could be anything; it could be zero, a constant, or undefined. Many
famous mathematicians have "proved" absurdities through a naive use of
infinity. Be wary of infinity.

For example, suppose you have a bag of apples and each one is labelled
with one of each of the positive integers. At two minutes to noon you take
the first ten apples out of the bag and put them in a convenient box. Then
you take the apple labelled "one" out of the box and eat it. At one minute
to noon you take the next ten apples out of the bag and put them in the
box. Then you take the apple labelled "two" out of the box and eat it. You
keep doing this until noon, halving the time interval at each step. How
many apples are in the box at noon? One answer is "an infinite number,"
since you put in nine times as many apples as you ate. Another answer
is "zero," since for any i, the apple labelled with i was removed at 4 / 2 i

minutes to noon, so there aren't any apples in the box!6
If two functions go to zero or to infinity, the limit of the ratio of the

functions is indeterminate. Fortunately sometimes we can find the limit of

6A third answer is "undefined," since you could never really do this (or perhaps 'Who cares?,"
since after eating all those apples you're too sick to care. ).
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such ratios using the following rule; it is named after a seventeenth-century
French nobleman-Guillaume de 1'H6pital ("lop-ee-tal") -but it was devel-
oped by Johann Bernoulli ("ber-nu-lee"), one of a famous family of Swiss
mathematicians and scientists.

l'H6pital's rule: If f and g are differentiable, lim f(x) =

lir g(x) = oc, and lir f'(x)/g'(x) exists, then

lim f(x)_ =lira fPx)
x-- g(x) X-- g'(x)

We can use i'H6pital's rule to show that ign = O(v/n). So Ign is no
faster than v/n-.

lim lgn _ lim Inn
n--oc v/-n n'- -• In 2v/-In-

1 In n (an undefined limit)h- l2 nlim, vln-

1 lim 1/n (differentiating top and bottom)
ln-2 -- 1/(2/-n-)
1 2I lim 2

n0

Thus, not only is Ign = O(v/i) but, more precisely, Ign = O(vW).
So Ig n grows slower than v/'. So if we have to choose between two
algorithms whose resource costs were lg n and vn we should choose the
Ig n algorithm. More generally, it is possible to show that every sublinear
function grows faster than any polylogarithmic function.

Pause Show that lg 2 n = o(n1°).

Here's a harder one: which function grows faster, 2109 or nr where 1 >
r > 0? Since both functions go to infinity we could try 1'H6pital's rule.

Pause Try 1'H6pital's rule now.
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That's the trouble with rules-they don't always work. If you depend
on rules to replace thought, one day you will be forced to think and you
won't know how.

Let's think for a minute. Is there any way to relate these two functions?
If we could cast both functions as variants of yet another function then we
would at least have a common yardstick and could sensibly compare them.

Let's try the logarithm function. We know that n . 2 lgn (why?), there-

fore nr = 2 rlgn. So if 2 rlgn grows faster than 2/Ign, then nr grows faster

than 2v'g-.
But 21 is a one-to-one increasing function; therefore 21 > 2Y if and only

if x > y (this is like taking logs of an inequality). So now we only have
to show that there is a c such that for all n > c, r lg n > v/ gn. Which is
easy. rlgn > /Vgn ==>lgn > 1/r 2 .

Pause So what's c?

So an algorithm whose run time grows like 2 Vig9, grows slower than
every sublinear algorithm.

1.8 Back to Reality

There's always an easy solution to every
problem-neat, plausible, and wrong.

H. L. Mencken

It would be great if once we know that one algorithm's resource cost grows
faster than another's then the slower growing one is better. Unfortunately,
because we allowed two degrees of freedom in the definition of order
notations (the initial constant and the constant multiplier), we have let
ourselves in for three possible problems.

First, how big must the input be before it's better to use the slower
growing algorithm? For example, we proved that n2 goes to infinity faster
than n, so a linear algorithm is better than a quadratic algorithm. But
suppose the constant multipliers of the two algorithms are a million and
a millionth, respectively. How big must the input be before the linear
algorithm is superior?

Well, we require the smallest n that makes 106 n < n 2/10 6 . This is true
when n > 1012. Thus, the input must be at least a trillion before the
linear algorithm is better! Fortunately, in practice constant multipliers are
usually within a factor of a hundred of each other. And in that case a linear
algorithm is better than a quadratic one.
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Second, it can be misleading to perform arbitrary operations on func-
tions. For example, a 9(n2 ) algorithm is better than a E(2n/l°) algorithm
for any n bigger than 150 (assuming equal constant multipliers). How-
ever, a e(lg n) algorithm is not much better than a E(n'/1°) algorithm
until n is bigger than 2150. And 2150 _ 1050 is many times larger than the
age of the universe in seconds.

Now this is strange because n 2 is to 2 n/10 as lg2 m is to m1 /1 ° (take n =

1gm to see this). Thus, n 2 should grow relative to 2 n/1l like lg 2n grows
relative to n 11 °0 . And it does; but not for the input sizes we usually see. So,
taking the logarithm of functions preserves their growth rate difference but
distorts their growth rate relative differences. This is important because for
practical purposes lg2 n and n1/1 ° are roughly the same. But this practical
equivalence between the functions does not hold after we blow up the
input exponentially; as soon as we do that, the difference between the two
functions' growth rates becomes significant. An exponential change makes
a difference because there is a practical limit to the size of our inputs.

Finally, in practice we can only devote a certain amount of time to solv-
ing a problem. So what does it mean, in practical terms, to reduce an
algorithm's growth rate? If we expect inputs whose sizes are in the million
range, then shaving off a factor of n results in a million-fold saving. Even
if the constant multiplier for overhead increases a thousand-fold we're still
way ahead. However, for the same range, shaving off a factor of lg lg n
results in only a four- or five-fold saving. Typically the constant multiplier
increases by at least that much as the algorithm becomes more compli-
cated.

The heart of these three problems is that for any problem we only want
to compute on instances up to some fixed size and we only have a finite
amount of time to devote to each instance. In short, there is only a small
practicality window. Outside of this window either problems of the right
size do not occur in practice, or if they did we couldn't afford the resources
needed to solve them. Figure 1.16 sketches the practicality window for
two pairs of functions; the curves represent the cost of different algorithms,
and the dotted lines show the practicality window. We want functions that
pierce the practicality window on the right-hand side; if our solution grows
like that then if the problem size grows we can afford to solve it. Solutions
that pierce the practicality window through the top are effectively useless;
no matter how much time we have to devote to the problem we can only
afford to increase the size of problem instances by a small amount.

Order notations, the calculus, and asymptotic analysis in general, give
information about growth rates as n goes to infinity, not about the shape
of curves inside the practicality window. In both cases in figure 1.16 f
grows asymptotically faster than g, so in both cases asymptotic analysis
would say that g is better than f. But in the second case, g is actually
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worse than f for all input sizes we see in practice! Asymptotic analysis
can be quite misleading.

S...................................... "

cost f cost

size size

Figure 1.16 Possible ways of leaving the practicality window

Perhaps we should forget about "infinitely growing" inputs entirely?
After all, we know that in practice we will never have inputs bigger than
1015 or so. Unfortunately this cure is worse than the disease. Table 1.11
gives some values of the lg* function. lg* n is the iterated logarithm of
n; it is the number of times we must take the base two logarithm of n to
get down to one or less. For all practical purposes we may as well take
lg* n to be five or less; but what happens when we do? If we bound lg* n
then we have bounded n. If we bound n then all inputs are constant
size. If we only have inputs up to some constant then all our algorithms
are constant time. Our whole carefully constructed edifice of analysis
crumbles!

n 1 2 3-4 5-16 17-65536 65536-265536(_ 1019728)

lg* n 0 1 2 3 4 5

Table 1.11 The iterated logarithm function

The moral is that we have to temper justice with mercy and assume
(unrealistically) that the input can grow to arbitrarily large sizes just to
compare algorithms for reasonably sized inputs. If the input is relatively
small then almost any algorithm will do (unless the problem is very com-
mon or very hard), and if the input is ridiculously large then no algo-
rithm will do, so, in practice, we are mostly interested in "reasonably large"
problem instances. Growth rates, although applicable only to ridiculously
large instances, can say something about performance on reasonably large
instances. We use them to try to predict how solutions will behave inside
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the practicality window by looking at their gross behavior outside the win-
dow. Nevertheless, do not be seduced by an algorithm's asymptotic effi-
ciency; in practice we have to vet all algorithms against reality. Asymptopia
is a great place to visit, but no one should live there.

1.9 Hard Problems

Good judgment comes from experience,
and experience comes from bad judgment.

Barry LePatner, quoted in Robert Byrne,
The 1,911 Best things anybody ever said

The previous sections sketch the basic topography of the continent of anal-
ysis. Now let's look at an important mountain range of hard problems.
This last section revolves around the question: what is a hard problem?

Here's a problem: Tess Trueheart decides to hike over a mountain. The
reason doesn't matter so let's say that her sweetheart, Richard Tracy, lives
on the other side. Tess leaves at eight in the morning and hikes over the
mountain in a day. Some days later she again leaves at eight in the morning
and, following the same path she used before, she returns home in a day.
Prove that there is a point on the path such that Tess passes the point at
the same time of day on both trips.

Pause Stop and think about this. Is it even true?

The natural thing to do is to start drawing graphs of distance against
time looking for some special point common to all such graphs. But this
seems like an infinite process. Fortunately there is an elegant way to prove
the result. Imagine two hikers walking along the same path from opposite
directions. It doesn't matter that the path crosses a mountain or that the
hikers start at the same time. At some point they will meet. At that point
it will be the same time of day for both hikers (of course!) and the same
place (ditto!).

This kind of problem is usually called a puzzle, but in our list of hard
problems (page 10) it's a "conceptually hard problem." Puzzles have the
special property that they seem difficult until we sneak up on them some-
how. However, having done so, it is usually easy to see that the strange
strategy solves the problem.

Here's another problem: Given a chessboard and thirty-two dominoes
we can cover the board with the dominoes in such a way that every
domino covers two chessboard squares and no square is covered by more
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than one domino (this is easy to do). Suppose we cut off the top left
and bottom right squares of the chessboard. Is this mutilated chessboard

coverable by thirty-one dominoes?

Figure 1.17 A chessboard and a domino

The obvious thing to try is to lay some dominoes on the board and
see if thirty-one dominoes can be made to cover the board. At least in
this puzzle there are only a finite number of possible ways to cover the
board, so we know that we can exhaust all possible coverings. As we try,
however, we notice that there are always at least two squares we can't
cover (try it on graph paper). Perhaps it cannot be done?

Now observe that since each domino can only cover two squares hori-
zontally or vertically, the two squares it covers must be of different colors.
But there are now thirty black squares and thirty-two white squares so there
is no way to match the colors up. Also, each possible domino covering
corresponds to such a color matching. Thus there is no way to cover the
mutilated board with dominoes!

The thing that's special about puzzles is that their solutions are hard
to find but once given a solution it is usually easy to check that it is a
solution. Often the only apparent way to solve a puzzle is by a brute
force enumeration of all possibilities (or a large proportion of all possibili-
ties). For example, although it isn't a puzzle, we've seen that the function
f (n) = 2n - 1 satisfies the towers of Hanoi recurrence. It seems harder to
guess that function out of a clear blue sky than to check that the function
satisfies the recurrence. A similar thing occurs in computation. There are
many problems whose solutions are "easy to check" but seem to be "hard
to find."

For example, a prime number is a positive integer divisible only by itself
and 1 (divisible means that the division leaves no remainder). Thus, 2,
3, 5, 7, 11, 13, 17, 19, and 23 are prime. A number that isn't prime is
composite. Is 667 prime or composite? It appears harder tofind the factors
of 667 (if it's indeed composite) than it is to check that 667 = a x b for
some given a and b. To check this, we need only multiply a and b and
see if their product is 667. However, to find these factors in the first place
seems to require us to test whether 667 is divisible by 2, 3, 5, 7, 9, 11, 13,
17, 19, and 23. (Why can we skip numbers?)
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Pause Why stop at 23?

At a 1903 mathematics meeting, Frank Cole, an American mathematician,
presented a paper without saying a single word. Silently he raised two to
the 6 7 th power and subtracted one.

267 - 1 = 147573952589676412927

He then wrote down the number 193,707,721, then the number 761,838,-
257,287, and multiplied them.

193707721 x 761838257287 = 147573952589676412927

He later said that the factorization took him "three years of sundays" to
find, but the gathered mathematicians had only to check his multiplications
to see that the factors were correct. There seems to be a big difference
between finding and checking!

Pause How did Cole find 267 so rapidly? (Hint: X2, = x"xn.)

Even so, the difference between finding and checking might not seem
that big a deal. However, the existence of a fast algorithm to factor integers
would mean the end of many computer security measures used by banks,
industry, the government, and the military. The idea is that because there
appears to be a big difference between finding factors and checking factors
then factoring can be used as a trapdoor. Trapdoors are easy to get out of
but hard to get into; going one way is easy, but going the other way is hard
unless we know where the secret latch is. As we will see in chapter six, we
can use trapdoors to build relatively secure systems. Since some of these
trapdoors help guard both your bank account and our military secrets, the
distinction between finding and checking can be very important indeed. 7

We say that a problem has a fast solution if we have an algorithm to
solve it taking time that is at worst a polynomial of the size of the problem.
Thus, the time the algorithm takes to solve any instance of the problem is
no larger than some constant power of the size of the problem (if the
problem is of size n, this is n '). For example, testing whether an integer
is even (divisible by two) is polynomial in the size of the problem, and
is hence fast, since the algorithm only need check that the last digit of
the number is 0, 2, 4, 6, or 8. Similarly, the complementary problem of
deciding whether a number is odd is also polynomial.

71n 1940, G. H. Hardy, an English number theorist, wrote that he was happy that the two
topics in pure mathematics that he found most elegant had no practical use whatsoever. Those
two topics were number theory and the theory of relativity. Poor Hardy.
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It might not seem that bad to find that 667 = 23 x 29 but cryptology today
uses much larger numbers than 667; much larger even than 267 - 1. The
obvious algorithm to test primality-try all smaller primes-is not suitable
for large numbers since it takes time that is not polynomial in the size of
the problem. (The size of the problem is not n, but lg n; we'll find out
why in chapter six. ) Here's an example of a large factorization problem:
is (2353 + 1)/3 prime?

(2353 + 1)/3 = 61159963093068573642955223874722318
42124173304448749663300236905031794
336235959488186716141627001830812331

This number has one hundred and six digits! Surely this problem is harder
than asking whether 667 is prime. Is this question easy or hard? What do
we mean when we say that a problem is computationally hard?

Let's separate the difficulty of solving a problem instance just because it's
large from the difficulty of finding versus checking. To see why, consider
addition. Addition is a well-understood process, yet the addition of two
numbers with trillions of digits is a hard problem. Nevertheless it's hard
only because the instance is large, not because addition itself is difficult.
Since every problem instance of large enough size is hard in that sense we
aren't interested in that kind of hardness.

Going by the everyday meaning of the phrase "hard problem," we might
say that both the hiker problem and the mutilated chessboard problem are
hard, meaning that a random person probably can't solve either of them in
under a minute (say). However, this intuition does not apply to comput-
ers since the difficulty lies with us, not the computer. The hiker problem is
conceptually hard. The mutilated chessboard problem is not conceptually
hard, we can always enumerate all cases, but it, at least initially, appeared
to be computationally hard.

The current best solutions to thousands of important problems are expo-
nential in the size of the problems. Their best solutions take time pro-
portional to a constant raised to the power of the size of the problem
(if the problem is of size n, this is rn, r > 1). This is unacceptably
long even for fairly small instances of the problem. (As we saw with
HANOI, for n as small as sixty-four, the run time can be longer than the
age of the universe!) Just what is it about such problems that makes them
intrinsically hard?

The trouble is that sometimes we really don't know if they are intrinsi-
cally hard or not. It's difficult to tell whether a problem with a complex
solution is a simple one hiding itself in complexity, or a truly complex one
that came by its complexity honestly.
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For example, the factoring problem does not yet have a polynomial solu-
tion. Does this mean that it doesn't have one or that no one sufficiently
clever has tried to find one? We have proved that the towers of Hanoi
problem requires an exponential number of moves, but until we proved
that lower bound, we had no idea if algorithm HANOI was good or bad; it
seemed good, but we weren't sure. At this point you might object that the
"real" reason the towers of Hanoi problem is computationally hard is that it
takes exponential time just to list the solution. True. Nevertheless there are
problems whose outputs are the simplest possible output of "Yes" or "no"
that still need, or perhaps only appear to need, exponential time. Worse,
some problems are so hard that they are computationally unsolvable, no
algorithm can solve these problems.

OH/ I'M NOT SURPRISED YOU COULDN'T
SOLVE THE LAST QUESTION-IT'S UNSOLVABLE°

In chapter seven we will discover that there is a special group of
about two thousand apparently computationally hard problems called AKP-
complete problems. They have been proven to be of roughly equivalent
difficulty and a polynomial solution to any one would imply a polynomial
solution to all others (for more detail see chapter seven, page 424). Since
these problems are important in practice and either all polynomially solv-
able at one stroke or all exponentially solvable, there is intense interest in
their solution. One more reason to study these expensive problems is that
they are the problems that tie up the computer the most!

The first problem proved to be Af79-complete is called the satisfiability
problem: can a proposition composed of variables that can only have one
of two logical values, true or false, ever be true (be satisfied) ? The only
known solution to this problem, as for all other ff79-complete problems,
is to examine all, or a large fraction, of the exponential number of com-
binations of possible truth assignments. This is like trying to solve the
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mutilated chessboard problem by trying all possible ways to lay dominoes
on the board. For the past two decades, this brute force solution has been
the best solution known for every AKP-complete problem.

Solving Hard Problems

If there really are many important problems whose solutions require expo-
nential time and if exponential time algorithms really are useless in practice,
then how do we solve these problems?

Well, there are several general techniques we can use. Two of these are
dynamic programming and greedy algorithms. However, while better than
blind enumeration, these techniques can still be exponential in the worst
case.

To cross this mountain range of hard problems we must be more devi-
ous. Since exact solutions are so difficult, why not find approximate solu-
tions to these problems? In practice, "near" solutions may be sufficient.
This idea leads to approximation algorithms. There are good approxima-
tion algorithms for some of these hard problems that do not guarantee to
get the best possible answer, but at least they terminate quickly. Approx-
imation algorithms don't solve the original problem, they solve a relaxed
version of it. Instead of climbing the mountain we climb a nearby foothill.

There are other ways to relax the original problem to derive reasonable
solutions in a reasonable time. Probably the most surprising of these are
probabilistic algorithms, which guarantee to work only most of the time!8
In the past, algorithms always had to give the right answer; probabilistic
algorithms usually give the right answer but they always give an answer
fast. Instead of climbing the mountain we tunnel through it, accepting the
possibility that we may come out at the wrong place. It is worrying that
we try to solve these hard problems by writing algorithms that we know
can lie to us, but desperate times call for desperate measures!

Here is a simple probabilistic algorithm:

Problem: Decide whether

(6x 2 + 3X 3 - X) 3 + (6x 2 - 3X 3 + X)3 = (6X 2 (3X 2 + 1))2

Algorithm: Generate a random number and see if it satisfies the
equation. If it does, then say that the equation is correct. If it
doesn't, then say that the equation is incorrect.

8 1n this book we'll call an algorithm that uses random numbers a randomized algorithm; as
we shall see in chapter three, page 209, a probabilistic algorithm is not necessarily random-
ized, and a randomized algorithm is not necessarily probabilistic.
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Now if this algorithm says the equation is incorrect, the equation is not
correct, but if it says the equation is correct, it may be wrong. Of course,
if the algorithm is much faster than a non-probabilistic algorithm we can
just run it again (and again... ). If it says that the equation holds for
many random numbers then our confidence that the equation is correct
increases. (Actually, if the equation is true for three numbers, it's true for
all numbers. )

Pause]Is the equation correct?

Note the distinction between probabilistic algorithms and normal algo-
rithms that happen to be good on average. Speaking loosely, a probabilis-
tic algorithm is always fast but only mostly right; a normal algorithm that
is good on average is mostly fast but always right.

1.10 Coda-The Continent of Analysis

Science is a match that man has just got alight. He thought he was
in a room-in moments of devotion, a temple-and that his light

would be reflected from and display walls inscribed with wonderful
secrets and pillars carved with philosophical systems wrought into

harmony. It is a curious sensation, now that the preliminary sputter
is over and the flame burns up clear, to see his hands lit and just a
glimpse of himself and the patch he stands on visible, and around

him, in place of all that human comfort and beauty he anticipated-
darkness still.

H. G. Wells, Essays: The Rediscovery of the Unique

In the early fifties, when vacuum tubes roamed the earth, there was a lot
of controversy over what was the right model for analyzing algorithms.
In those prehistoric times people were not even sure what the appropri-
ate model of a computer should be. Have we got it right? Throughout
this chapter we've made many assumptions about the appropriate way to
analyze problems. Are our results of any practical use? Here are three
assurances that they are.

First, we have to start somewhere. We can use any analysis, no matter
how rough, to winnow out bad ideas during the design phase. Mindlessly
optimizing a program by making small improvements in the code before
analyzing its algorithm is like doing carpentry with only sandpaper. It can
be done, but using a saw is a lot faster.

Second, we have to make up our own model for each new problem.
Studying abstracted problems, like the ones in this book, can only provide
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examples of how analysis is done. Every new problem, like it or not,
could require wholly new tools; it is not enough to amass a large collection
of tools that have worked well in the past. The road to heaven is paved
with good inventions.

Finally, while we have made many assumptions, some of the broad influ-
ences of problem cost are already included in our default model. Run time
is always important. It isn't the only important thing, true, but that is no
reason to forgo a time analysis. The ancients believed that the earth was
flat. We laugh at them today thinking smugly to ourselves that they must
have been very stupid. But consider: the earth is flat to within twelve cen-
timeters in every kilometer. For many practical purposes the earth is flat.

Chock-full of messy and tedious details, reality is an unpleasant place to
live; but it's better than the alternative. Being forced to live in reality, we're
always forced to approximate. Extending Wells' wonderful analogy: no
amount of matches will give light on a windy night. We can't do science if
we cannot isolate each variable or, at least, identify its effect. The analysis
grail is to minimize all resources used, but that's just not feasible. To
progress we're forced to restrict attention to only a few resource costs at
a time.

000

We've now seen something of the surface features of the continent of anal-
ysis, and we've briefly looked at an unusual mountain range of hard prob-
lems somewhere in the interior. We've seen that there are three kinds of
hard but solvable problems in computer science: problems can be concep-
tually, analytically, or computationally hard. Indeed, many problems can
be hard in all three senses; artificial intelligence tries to turn conceptually
hard problems into merely computationally hard problems.

Next, we will create a detailed map of a small but important state on the
continent-the state of comparison-based algorithms. Then we will slowly
work our way from the fairly well-understood coast to deep into the interior
where things are not so well mapped. But before we go, look at the vast
difference in our present levels of understanding of various parts of the
continent. As we have seen with Hanoi, we understand some problems so
well that we have exact solutions (within the model, of course). However
we know so little about AfP-complete problems that we don't even know
whether they are polynomial. There is much to do.

Endnotes

Computational Ideas
Complexity measure, problem, problem instance, problem size, model,
algorithm, recursive algorithm, resource cost, worst cost, best cost, aver-
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age cost, lower bound, upper bound, forward-backward strategy, optimal-
ity, order notation, asymptotic behavior, A/P-complete problem, approxi-
mation algorithm, probabilistic algorithm.

Mathematical Ideas
"* Proof by induction: A proof by induction works by establishing the

hypothesis for some small integer k (usually 1 or 2) then showing
that if the hypothesis is true for any n at least as big as k then it is
true for n + 1. Therefore the hypothesis is true for all n > k.

" Proof by contradiction: A proof by contradiction works by assuming
the falsity of the hypothesis then showing that this forces an absurdity.
Thus the hypothesis cannot be false, and so must be true.

" Using subtract and guess, and divide and guess to find the value of
sums.

"* Using limits and differentiation to estimate the growth rate of func-
tions.

Definitions
"* recursive algorithm: A recursive algorithm calls itself with at least one

of its parameters decreased.

"* recurrence.: A recurrence is a expression relating the value of a func-
tion at some point to its values at other, smaller, points.

"* logarithm: The base x logarithm of y is the power to which we must
raise x to get y.

"* factorial: The factorial of an integer is the product of all positive inte-
gers smaller than or equal to the integer.

" choose. n choose m is the number of ways of selecting m things
from n things without worrying about their selection order.

" limit: The limit of a function, if it exists, is the value the function
tends toward as one of the function's parameters tends toward some
value.

"* derivative. The derivative of a function is the limit of the function's
growth rate.

"* fibonacci number: A fibonacci number is the sum of the previous two
fibonacci numbers; the first two are both 1.
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"* prime number. A prime number is a positive integer divisible only
by itself and one.

"* composite number: A composite number is a non-prime positive inte-
ger.

"* linear function: A linear function of n is a constant times n plus a
constant.

" polynomial: A polynomial in n is a sum of terms where every term
is a constant times a constant power of n.

" exponential: An exponential in n is a constant times a constant raised
to a linear power of n.

Constants
m e = 2.71828 18284 59045 23536...

- o = 1.61803 39887 49894 84820...

Notation
S- = about the same size as

S: = such that

lg base two logarithm

I In = base e logarithm

* . = the sum of

S--+ = tends to

•! = the factorial function

* (rn) = number of ways of choosing m things from n things.

"* lim = the limit of

"* f' = derivative of f

"* df/dx = derivative of f with respect to x

"* max f(x) = the largest value of f where x ranges over the set S
xES

"* min f ( x) =the smallest value of f where x ranges over the set S
xES
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Conventions
,0! =1

Sx0 =l

*ig 1 = 0

n

rm > n =t- ri = 0
i=m

* m > n ==ý (n) =0

Tools
" 2n - 1 disk moves are necessary and sufficient to solve the towers of

Hanoi problem with n disks

" Vx > 1, logx y = z 4= xz = y 4== Xl0gx y=y

"* Vx>1, logxrs=logxr+logxs

"* Vx >1, Iyogxz = zlogxy

logy z

.Vx,y>1, logxz-logylogy x

* Solution of quadratics: rx 2 + sx + t =0 2r 4rt
2r

n(n + 1)
* 2

i=1

* Vn > m >0 (n) n!
- m!(n -m)!

1i n=l
Uf(n) =2f(n1)) = n>1 4==I f(n) = 2n - 1

(4 n = 1
•f(n) = 4fn1 n = I f::= f(n)22 = 4

4fn> (n~n -1)n n4>Ifl

f(n)= I f(n) n!nf(n-1) n > 1 #f

f(n) = n1 )n< nf<l (•~ ~ f~) (n -1) +f(n -2) n > 1 v/5fn)-•
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"* The binomial theorem: (x + y)n = n ( xn- yi

i=0

/ XV i
". ex = lim 11 + +-

n-~o n l
i=0

" n = 0(n 2 )
"• n2 54 0(n)

f ~ (n)"n lim f(n)=r f=0(g)
n-+• g(n)

"* lgn = (v•)

"* 2V' = 0(nr)

"l 'H6pital's rule: f and g differentiable, lim f(x) = o, lim g(x)X--+ 0 X ----

oc, and lim f'(x) exists, ==> lim f(x) = lim f'(x)- ,X g(x) g'(x)
" f(x) = Xr = f'(x) = rxr-1

"* f(x) = ex f'(x) = ex

1
"* f(x) = In x ==> f'(x) = -

X

"u Vx1, nx x--l (exercise8, page69)
i=0

Notes
In mathematical circles the number 0, also called the golden ratio, is
named for Phidias, perhaps the most important of the Greek sculptors of
antiquity. Phidias was the chief sculptor of the Parthenon, and the ratio
between many lengths and widths in the Parthenon is 0, said to be the
most aesthetically pleasing ratio. Considering that we owe Keats' "On
Seeing the Elgin Marbles" and probably also "Ode on a Grecian Urn" to
Phidias, there is obviously an intimate connection between recurrences
and good poetry.

The broken keyboard analogy for the 0 notation (page 43) is from
Asymptotic Methods in Analysis, N. G. de Bruijn, Dover, reprinted 1981.
The anecdotes about Gauss' addition and Cole's factoring are recounted in
Mathematics: Queen and Servant of Science, Eric Temple Bell, Mathemati-
cal Association of America, republication, 1987.

The example using the iterated log (page 51) was suggested by a pas-
sage in Donald E. Knuth's Blindern lecture notes on computer science,
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1972 (unpublished). The polynomial chosen to be tested for equivalence
(page 57) is one of Srinivasa Ramanujan's identities; Ramanujan, a famous
Indian mathematician, was probably the most gifted intuitive number the-
orist ever. Mathematics, like any other human activity, has its folk beliefs:
the hiker problem is a folk theorem in real analysis; the mutilated chess-
board problem is a folk theorem in combinatorics. Both problems have
appeared in many puzzle books. I don't know the original proposers and
would appreciate any information you may have.

Exercise 10, page 69, puzzled both Pierre de Fermat and Gottfried Leib-
niz. Exercise 12, page 70, is adapted from Playing With Infinity, R6sza
Peter, Dover, 1957. Problem 8, page 75, was suggested by "Computing
Fibonacci Numbers (and Similarly Defined Functions) in Log Time," David
Gries and G. Levin, Information Processing Letters, 11, 68-69, 1980. Prob-
lem 9, page 75, appears in aha! Insight, Martin Gardner, Scientific Ameri-
can/W. H. Freeman, 1978. This problem is a presentable form of an infa-
mous problem first solved at Yale in the late seventies. The original version
was a safe sex puzzle involving a number of men and women and it dates
back at least to the late sixties, perhaps much earlier.

The largest known prime cited in research problem 3, page 76, is from
Brown, Noll, Parady, Smith, Smith, and Zarantonello, Letter to the editor,
American Mathematical Monthly, 97, 214, 1990. The factorization of the
smaller number mentioned in the problem is the work of Arjen Lenstra,
and Mark Manasse, April 1989.

Research problem 4, page 76, is usually called the 3x + 1 problem. It
is also called Ulam's problem, Collatz's problem, Kakutani's problem, the
Syracuse problem, Hasse's algorithm, and the Hailstones problem. It is
very difficult and has a long history; many people, including me, have
wasted lots of time on it. When it was first introduced into America in the
fifties some mathematicians called it a Russian plot, since it was soaking
up the time of all American mathematicians and no one solved it. One
of the greatest living mathematicians, Paul Erd6s, is reported to have said
that "mathematics is not yet ready for such problems." See "The 3x + 1
Problem and Its Generalizations," J. C. Lagarias, American Mathematical
Monthly, 92, 3-23, 1985.

Further Reading
To improve your problem solving ability attack and engulf How To Solve
It, George P61ya, Princeton University Press, second edition, 1957. This
is the best book ever written on developing problem solving skill. See
also P61ya's Mathematics and Plausible Reasoning: Volume 1, Induction
and Analogy in Mathematics, Princeton University Press, 1954, and Math-
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ematics and Plausible Reasoning: Volume 2, Patterns of Plausible Infer-

ence, Princeton University Press, second edition, 1968. To learn about
proof techniques using simple examples read How to Read and Do Proofs,
Daniel Solow, John Wiley & Sons, second edition, 1990. For examples of
everyday mathematical thinking try Thinking Mathematically, John Mason,
Leone Burton, and Kaye Stacey, Addison-Wesley, 1982. To see a concrete
example of how mathematicians make everyday thinking more rigorous
and also to see something of the limits of rigorous thinking read the excel-
lent Proofs and Refutations: The Logic of Mathematical Discovery, Imre
Lakatos, Cambridge University Press, 1976.

For more background on the calculus see A Concept of Limits, Don-
ald W. Hight, Dover, 1977, and What is Calculus About, W. W. Sawyer,
The Mathematical Association of America, 1961. To catch something of
the excitement of mathematics read the classic Men of Mathematics, Eric
Temple Bell, Simon and Schuster, 1937. Although Bell occasionally made
factual errors he has excited generations of people to become mathemati-
cians. To find out what's happening today read The Problems of Mathe-
matics, Ian Stewart, Oxford University Press, 1987.

For a wide-angle introduction to algorithms and their uses read the won-
derful Algorithmics: The Spirit of Computing, David Harel, Addison-Wesley,
1987. To help you grapple with recursion see Thinking Recursively, Eric S.
Roberts, John Wiley & Sons, 1986. For a good introduction to clever pro-
gramming read Writing Efficient Programs, Prentice-Hall, 1982; Program-
ming Pearls, Addison-Wesley, 1986; and More Programming Pearls: Con-

fessions of a Coder, Addison-Wesley, 1988; all by Jon Louis Bentley. To
correct any urges to thoughtlessly hack read the superlative The Elements
of Programming Style, Brian W. Kernighan and P. J. Plauger, McGraw-Hill,
second edition, 1978. For an in-depth study of the art of good program-
ming read Software Tools in Pascal, Brian W. Kernighan and P. J. Plauger,
Addison-Wesley, 1981.

To find out more about A/P-completeness read Computers and Intrac-
tability: A Guide to the Theory of APP-Completeness, Michael R. Garey and
David S. Johnson, W. H. Freeman, 1979. For a good non-technical intro-
duction to infeasibility and APP-completeness plus some history of the field
see the wonderful article "Combinatorics, Complexity, and Randomness,"
Richard M. Karp, in ACM Turing Award Lectures: The First Twenty Years,
1966-1985, ACM Press, 1987. For a rigorous way to define and manip-
ulate order notations see "Crusade for a Better Notation," Gilles Brassard,
Sigact News, 17, 1, 1985. For a large selection of the "good bits" of com-
puter science written in a pleasant style read The Turing Omnibus, A. K.
Dewdney, Computer Science Press, 1989.

For other presentations of topics touched on in this chapter (and in
succeeding chapters) read the excellent Introduction To Algorithms.: A Cre-
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ative Approach, Udi Manber, Addison-Wesley, 1989. For a good all-round
introduction to analysis see the well-written Computer Algorithms: Intro-
duction to Design and Analysis, Sara Baase, Addison-Wesley, second edi-
tion, 1988. For a readable presentation of mostly mathematical algorithms
see Algorithms and Complexity, Herbert S. Wilf, Prentice-Hall, 1986. For
a wide selection of algorithms see Algorithms, Robert Sedgewick, Addison-
Wesley, second edition, 1988.

For a comprehensive presentation of both algorithms and analysis see
Introduction to Algorithms, Thomas M. Cormen, Charles E. Leiserson,
and Ronald L. Rivest, McGraw-Hill/MIT Press, 1990. Algorithmics," The-
ory and Practice, Gilles Brassard and Paul Brately, Prentice-Hall, 1988,
focuses on algorithmic techniques and Algorithms and Data Structures;
Design, Correctness, Analysis, Jeffrey H. Kingston, Addison-Wesley, 1990,
emphasizes correctness. Design and Analysis of Algorithms, Jeffrey D.
Smith, PWS-Kent, 1989, is an accessible introduction. The following takes
a very practical approach: Algorithms from P to NP: Volume I, Design
& Efficiency, Bernard Moret and Henry Shapiro, Benjamin/Cummings,
1991. For a list of many standard algorithms and exact analyses of their
worst and average cases see Handbook of Algorithms and Data Struc-
tures, Gaston H. Gonnet and Ricardo Baeza-Yates, Addison-Wesley, second
edition, 1991.

There are many earlier books on the analysis of algorithms. After
Knuth's series of books (listed below) the standard analysis book is the
pathbreaking The Design and Analysis of Algorithms, Alfred V. Aho, John
E. Hopcroft, and Jeffrey D. Ullman, Addison-Wesley, 1974. Also see
Fundamentals of Computer Algorithms, Ellis Horowitz and Sartaj Sahni,
Computer Science Press, 1978. For a large collection of carefully-analyzed
algorithms see the three volume Data Structures and Algorithms, Kurt
Mehlhorn, Springer-Verlag, 1984. Volume 1 is on sorting and searching,
volume 2 is on graph algorithms and A/'P-completeness, and volume 3 is
on multi-dimensional searching and computational geometry. The Analy-
sis of Algorithms, Paul Walton Purdom, Jr. and Cynthia A. Brown, Holt,
Reinhart and Winston, 1985, gives a thorough treatment of mathematical
analysis, and Algorithms. Their Complexity and Efficiency, Lydia Kronsj6,
John Wiley & Sons, second edition, 1987, concentrates on numerical algo-
rithms. See also Computational Complexity of Sequential and Parallel
Algorithms, Lydia Kronsj6, John Wiley & Sons, 1985.

To see where most of analysis came from you must read Donald E.
Knuth's massive, and magisterial, trilogy: The Art of Computer Program-
ming. Volume 1 (second edition, Addison-Wesley, 1981) concerns fun-
damental algorithms, volume 2 (second edition, Addison-Wesley, 1981)
focuses on numerical algorithms, and volume 3 (Addison-Wesley, 1973)
is all about sorting and searching. Knuth is without peer.
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Questions

Be doers of the Word, and not hearers
only, thus deceiving your own selves.

Epistle of James, 1:22, The Bible

[Exercises

1. Given a problem, consider the following algorithm: Give the problem
to a clever friend to solve.

(a) Is this an algorithm?

(b) If not, is it an algorithm if we can apply it recursively?

(c) Is it optimal?

2. (a) When using space as our resource cost should we count the
space needed to represent the input and the output?

(b) Should we count the program's length? (Hint: Can it ever
depend on the size of the input? Think of table-lookup.)

3. We have special names only for the first three powers (line, square,
cube; linear, quadratic, cubic; higher powers are derived from Latin)
because the Greeks felt that all numbers should have a geometric
interpretation. But they couldn't visualize more than three dimen-
sions.

n-1

(a) Examine figure 1.18 then show that E-(2i + 1) = n2 .
i=o

03 0 3 03

0 0 03 03 03 3 0

0 0 03 0 0 0 0 03 0

0 0 0 03 0 0 03 0 0 0

1 4 9 16

Figure 1.18 Square numbers according to the Greeks

n

(b) Use (a) to show that EZi= n(n +1)/2.
i~=O
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4. The Greeks were also interested in triangular numbers. Two consec-
utive triangular numbers make up a square. (See figure 1.19.)

1 3 6 10

Figure 1.19 Triangular numbers

Show that the nth triangular number is n(n + 1)/2.

5. Consider the code fragment in figure 1.20.

sum +- 0
for i from 1 to n

sum +- sum - 1

for j from I to i
sum - sum + 2

Figure 1.20 Another code fragment

(a) Does it set sum to the same value as the code fragments in fig-
ure 1.1, page 4?

(b) How many assignments does it do?

6. What is the final value of sum in figure 1.11, page 33? Note that
its value is not the same as the number of times it takes part in an
assignment.

n--1

7. Let f(n)= 2'.

Show that
(a) f(n) = f(n - 1) + 2 n-1.

(b) f(n) = 2f(n - 1) + 1.

(c) Use (a) and (b) to show that f(n) = 2n - 1.

(d) Use (b) and (c) to show that algorithm HANoI takes 2n - 1

steps.
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n-i

8. Let f(n)=Ex'.
i=0

Show that

(a) f(n) = f(n - 1) + xn- 1 .

(b) f(n) = xf(n - 1) + 1.

(c) Use (a) and (b) to show that f(n) = (xn - 1)/(x - 1).

(d) What is the value of the sum when x = 1?

9. (a) Use the square subdivision idea suggested in figure 1.21 to show

that E1 /2i = 1. (Note: Each subsquare is one-quarter of the
jil

size of the next biggest square.)

Figure 1.21 Dividing a square into smaller squares

(b) Construct two more square subdivisions suggesting the same
relation.

10. (a) Show that the sum E(-1)i = -1+1 -1+... does not have a

value. i=1

(b) Suppose we switch on a lamp at one minute to midnight, switch
it off at one-half minute to midnight, switch it on again at one-
quarter minute to midnight, and so on. Is the lamp on or off at
midnight?

(c) Is infinity even or odd?
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11. (a) Use the long division algorithm to divide (1 - x) into 1 to show
that I = I + X + X2 + X3 +

1--X

(b) Does this mean that 1 - 1 + 1 -.... 1/2?

12. A chocolate company decides to promote its chocolate bars by includ-
ing a coupon with each bar. A bar costs a dollar and with c coupons
you get a new bar.
How much chocolate is a dollar worth?

13. Use subtract and guess, or divide and guess, to find the following
sums. Once you have found a sum you may use its value in later
sums.

n n

(a) i (e) 1/2'.
i=1 i=1

n n(b) •i3. (f) •i2'.

i=1i1n n
(c) ii+l1). (g) • /i

i=1 i=1
n n

(d) •i(i +1)(i +2). (h) i2 /2'.

14. (a) Use induction to show that n 2 
- n is always even.

(b) Find a one-line proof of the same result.

(c) Show that n3 - n is always divisible by three.

(d) Is n 5 - n always divisible by five?

15. Rewrite HANOI to recurse until there are no disks instead of one disk.
Analyze your algorithm.

16. Number the Hanoi disks in order of decreasing size from 0 to n - 1.
Show that HANOI moves the ith disk 2 i times.

17. FIBONACCI uses the three variables past,previous, andpresent (exclud-
ing the loop index). Rewrite it to use only two variables.

18. Suppose our computer can only represent integers of up to ten dec-
imal digits. Roughly what is the smallest n that will force integer
overflow in algorithm 1.3, page 32?
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19. Consider the recurrence f(n) = f 1
ý f (n - 1) + n n > 1

(a) Guess that f(n) = rn 2 + sn + t and find r, s, and t.

(b) What happens if we had guessed that f(n) = rn + s?

20. (a) Show that the following recurrences all define the same function.

f() 2 n=l1
f(n) = f(n-1)+2 n > 1

2 n=1
f(n) = 4 n= 2

2f(n -1) - f(n -2) n > 22 nn1

f(n) 4 n =2
6 n=3
f(n-1)+f(n-2)-f(n-3) n > 3

(b) Show that there are an infinite number of recurrences defining
the same function.

(c) If there are no boundary conditions, are there an infinite number
of functions satisfying any recurrence?

21. Let f be the fibonacci number function and assume that f is non-
decreasing. By using this fact alone show that

Vn > 2, 2n > f(n) > /2n

22. Surprisingly, the binomial theorem for (1 + x)r holds even for real
r, once 1 > x > -1. Here's how to use the binomial theorem to
estimate V'--.04.

VT 0 = (1 + 0.04)1/2
1(1 1) 2 (+ -1) (1 2)

= 1 + 0.04+ 21 0.042 + 0.043 +2 lx 2 1 x2 x3

0.04 0.042 0.043

- 2 - 8 + 16
- 1 + 0.02 - 0.0002 + 0.000004 -.... 1.019804

Although the binomial theorem doesn't apply to (1 + x)112 if x > 1,
we can still use it to find square roots of large numbers.
Find the square root of 41600 to five decimal places.
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23. Given that log10 2 = 0.30102999566... show that 216 has 6,298,387,-
349,264 decimal digits.

24. (a) Show that 1 = 0(1) and that 1 = 0(n).

(b) Show that the growth rates of the code fragments in figure 1. 1,
page 4, are: 0(1), 0(n), and, 0(n 2 ), respectively.

25. Suppose that f = 0(n).

(a) Show that

i. f(n)/n = 0(1).

ii. f(n)/n 2 = 0(1).

(b) Characterize f(n)/n 3 as exactly as you can.

26. (a) Show that

i. 5n = 0(nlgn).

ii. 40n lg n = 0(n 2 ).
iii. 7n lg n = Q•(n).

iv. 12n2 = Q(n lg n).

(b) What can you say about the relative growth rates of n, n lg n,
and n 2 ?

27. Suppose you have five algorithms with worst case run times (in
microseconds) of 10000 ig n, 1000n, 100n lg n, i0n 2 , and 2n, respec-
tively, where n is the size of the input.

(a) What is the worst case fastest algorithm for each value of n?

(b) Given an hour of computing time, each algorithm can solve the
problem only for instances up to a certain size. What is this
limiting size for each algorithm?

(c) Answer (b) for a machine running ten times faster.

28. Complete the following sentence in as many ways as you can: 2n
grows relative to n as - grows relative to ig n.

29. (a) Show that 0 is transitive, that is, show that

f = O(g) and g = O(h) =# f = O(h)

(b) Are any of the other order notations transitive?
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30. Is there anything wrong with any of the following arguments?
n n n

(a) i = EO0(i) = >O(n) = nO(n) = O(n2)
i=1 i=1 i=1

n n n

(b) k•-k = E-0(ki) = >3O(kn) = nO(kn) = 0(nkn)

n n n n
(c) k'k = >0(ki) = ko() = >kO(n) = nk°(n)

i=j =1 i=1 i=1

31. Suppose that algorithm A runs in time f(n) and that algorithm B
runs in time g(n). Answer the following four questions for each of
the following five cases.
Questions: Cases:

(a) Is A faster than B for all n? (1) g(n) = Ql(f(n)Ign)

(b) Is B faster than A for all n? (2) g(n) •f(n)lgn

(c) Is A faster than B for all n (3) g(n) = E(f(n)lgn)
greater than some c? (4) g(n) = O(f(n)lg n)

(d) Is B faster than A for all n (5) g(n) = o(f(n)lgn)
greater than some c?

32. Show that
(a) f g f =g+o(g).

(b) f =o(g) = f = O(g).

(c) f =o(g) z=: f = O(g) and g # O(f).

33. Suppose algorithm A has worst cost f and suppose g is the cur-
rent best lower bound on the problem. The problem's actual cost is
unknown. If f = g + O(h) give conditions on h so that A is worst
case asymptotically optimal.

f (n)
34. We have seen that lim f(n) = r ==ý f = 0(g). Is the converse

true?

35. Describe the following sets of functions in English:
(a) nO(1) (d) nQ(1)

(b) O(n0(1)) (e) O(nfl(1))

(c) O(O(nO(1))) (f) O(O(nq(1)))

36. (a) Show that 2n+r = 0(2n).

(b) Show that 22n-r 0• (2n).

(c) Is 2r, = 0(2 n)?
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37. Show that

(a) nr grows faster than ns for all r > s.

(b) rn grows faster than sn for all r > s > 1.

38. Let fz_ g = lim(f(n)-g(n))=0.
n- oo

(a) If f and g are increasing functions, g is non-zero, and f(n) is
always at least as large as g(n), show that f _ g =#. f : g.

(b) Give two reasons why we should use z and not - in analysis.

]ProblemsI

1. Find a growth rate that cubes the run time when we double the input.

2. (a) Arrange n 2 apples in a square. From each row find the largest
one and let A be the smallest of these. From each column find
the smallest one and let B be the largest of these. Which apple
is bigger, A or B?

(b) The lower bound on the worst cost of a problem has been
defined as

min max fA (I)
AeAM /z•

Is this the same as

max m m fA (I) }
3. For this problem recall that there may be an infinite number of algo-

rithms allowed within a model. Answer the following four questions
first for lower bounds on the worst cost then for lower bounds on
the average cost. Assume that worst costs are integers.

(a) Does every problem have a best lower bound?

(b) Having a representative input size implies that the resource usage
graph of an algorithm "looks the same" no matter how large the
input is. How could there not be a representative size?

(c) If the best lower bound exists, must there be a simple relation-
ship between the input size and the resource cost for each input
size?

(d) If the best lower bound exists, must there be a single algorithm
achieving this bound for all input sizes? (That is, not one for
each size, but one for all sizes. )
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4. Which function grows faster:

(a) nr or lgc n where 1 > r > 0, and c > 1?

(b) n1In or lgn?

(c) nlgn or lgn n?

(d) 22n gn or 2n!?

(e) 2 lgnlglgn or nlgnelglgn?

5. Show that the fibonacci numbers are f (n) = on- (1 - )n

6. Here is an iterative algorithm to solve the towers of Hanoi problem:
Arrange the pegs in a circle. Move the smallest disk to the next peg
in clockwise order unless the last move was a move of the smallest
disk, in which case, make the only other legal move.
Show that this iterative algorithm does exactly the same sequence of
moves as the recursive algorithm.

7. Find the average number of moves necessary to solve the Hanoi prob-
lem starting from an arbitrary legal arrangement if every legal arrange-
ment of n disks distributed on the three pegs is equally likely.

8. Let f(n) be the nth fibonacci number. FIBONACCI finds f(n) in linear
time.

(a) Show that it is possible to find xn given x in O(lg n) multiplica-
tions.

(b) Show that f obeys the following matrix recurrence for n > 2.

( f(n) _ (1 1 f(n-1)
f(n-1) J 1 0 fn(n- 2)

(c) Show that f(n + m + 2) = f(n + 1)f(m + 1) + f(n)f(m).

(d) Design an algorithm generating f(n) in logarithmic time.

(e) Is your algorithm asymptotically optimal?

9. Each of n surgeons must separately operate on each of n patients.
However, surgeons don't want to catch the patients' diseases, nor
do they want to infect any patient with any other patient's disease.
Clinical procedure requires that no glove surface touched by a doctor
should touch a patient. Assume that each surgeon refuses to touch a
glove surface that another surgeon has touched.

(a) Show that two surgeons can operate on two patients using only
two surgical gloves in all. (Hint: Surgical gloves are made of
rubber and so can be everted-that is, turned inside out. )
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(b) What is the minimum number of surgical gloves required to
accomplish the n2 operations?

(c) Prove that your algorithm is optimal.

SResearch

1. Solve problem 9 for n surgeons and m patients.

2. We can generalize the towers of Hanoi problem to more than three
pegs. What is the minimum number of disk moves necessary and
sufficient to solve the problem when there are m > 4 pegs?

3. (2353 + 1)/3 is a product of two primes the smaller of which has 37
digits. This took about a year to decide using a clever algorithm. The
largest known prime is 391,581 x 2216193 - 1. This number has 65,087
digits. How would you test this number for primality?

4. What is the cost of algorithm 1.4?

STRANGE ( n )
{ Do something mysterious with n > 1. }

while n # 1
if n is even

then n - n/2
else n *- 3n + 1

Algorithm 1.4

5. Find a general way to derive good lower bounds for a wide class of

problems.

6. The following crossword is British style; the clues are cryptic refer-
ences to the answers. Many of the words in the puzzle can be found
in this chapter. The number of letters in each word is given in paren-
theses; every number corresponds to a word. Hyphenations are indi-
cated by a dash. Usually the answers are disguised using bad puns
and other double meanings, or are anagrammed or otherwise hidden
in the clue. Be wary of misleading punctuation and capitalization.
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Across: Down:

1 A slow function sounds like a lumberjack's 1 Loafer's idle remains. (9)
beat. (9) 2 Depression from bird. Why? (5)

5 Color found in a ebambermaid 's heart. (5) 3 Send up an occasion. (4)
8 Nothing in Brazil changes. (5) 4 Confused acronym forgets New York is big. (5)

10 Cbain me bewildered--a computer, for 6 Smallest mind without end. (3)
example. (7) 7 Happens again about mongrel. (5)

13 Farther on in a wardrobe yonder. (6) 9 A layer then, witb no tea? (3)
16 No light shower. 0! Word pun madness! (8) 11 A capital order! The ironic are not included. (5)
17 A count is less feeling. (6) 12 Feeling a direction and movement. (7)
18 Mapping a fly's bead in ointment. (8) 14 Revolving patb but a sphere precedes it? (5)
21 Is ten ten? Addled but aware. (8) 15 A strange ridge has a mournful air. (5)
24 Rich ancestor keeps fortune. (6) 18 A seizure is desirable in clothing. (3)
26 Vehicle common for people who lisp. (3) 19 Honey found in a dreamy trance. (6)
28 A tree on which your life is written. (4) 20 A necessity muined Eden. (4)
30 Micro giant is first temptation. (5) 22 A Peron raised a Roman hail. (3)
33 For almost goes with to? (3) 23 Put in wrong? Gives algorithm food for thought. (5)
35 Choose one mother; lucky start is best. (7) 25 An odd resort, but Cleo fell upon it, we hear. (3)
37 An example, peeled and chopped, is the 26 Enumerate the low ranking nobleman. (5)

biggest. (3) 27 A letter from Greece cut a rhododendron. (3)
38 About as fast as the tamale losing its man? (5) 29 Ale drunken with two thousand and a
39 Stirring logarithm discovers a recipe. (9) proposition. (5)

31 Might the prisoner of war erode missing poetry? (5)
32 Bound for M.I.T. after '51. (5)
33 Beat up a game. (4)
34 Morning after former spouse is final. (4)

36 Hit it up and get it down. (3)



PART ONE

Fresh Horses

Shall the contents discover, something rare
Even then will rush to knowledge.

Go; fresh horses;

And gracious be the issue.

William Shakespeare, The Winter's Tale, I11, I

NOW THAT we've geared up for our trek, let's look at
the entire domain we will be exploring. In chapter

two we grapple with the problem of searching for things.
In chapter three we examine the problem of summariz-
ing things. And in chapter four we look at the problem
of arranging things. All three chapters introduce ideas,
approaches, and techniques useful beyond their immedi-
ate application in the chapter.



SEARCHING

The whole of science is nothing more
than a refinement of everyday thinking.

Albert Einstein, Physics and Reality

jOW LET'S begin solving our computational problems. Our first foray
into the continent of analysis is to search for something; we want to

find a target in a domain by probing elements of the domain. Searching
should be well-understood since we do it every day-we're always looking
for phone numbers, car keys, and good television shows. However, good
search algorithms depend on the search problem since searches vary in
fundamental ways. For example,

" we. may probe inaccurately (searching for your only pair of glasses);

"* probes may have unequal cost (searching for a pin in the dark);
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"* domains may be infinite (searching for oil);

"* targets may move (searching for an enemy submarine);

"* targets may be ill-defined (searching for a good television show);

"* search time may be bounded (searching for a gas leak); or

"* searches may be all of the above (searching for meaning in life).

Let's simplify and assume that: we are searching for a well-defined
and fixed target; we have an unbounded time to find it; the domain
is static and finite; all probes cost the same; we never make a mistake
when probing; and, we never forget any information gathered during the
search.

Further, in the computer world we don't search for something, we
search for its key. Often, the domain is complicated so we make up a set
of simple keys and associate each element of the domain with a key. The
point is to make each key, presumably a simple object, stand for an ele-
ment, perhaps a complex object. For example, in a database with records
dozens of fields long it's sensible to index the records by a numerical key
(say, their position in a list).

We use keys every day. For example, your friend Terry is a complicated
organism. If every time you wanted to find Terry you had to describe him
completely, you and Terry would be quickly estranged! Fortunately we
have invented several keys identifying Terry. Terry answers Terry's phone.
Terry reads mail addressed to "Terry." Terry answers to the word "Terry."
Terry has a scraggly beard. No key identifies Terry uniquely, but taken
together they often do.

In this chapter our domain is a set of elements that can be put in order
in the same way that we can put numbers or words in order. The num-
bers 3, 10, 6, 1 are out of order, the numbers 1, 3, 6, 10 are in increasing
order. (They are in decreasing order as: 10, 6, 3, 1. ) Putting things
in order is called sorting. We will find out how to sort things in chap-
ter four.

This chapter is about different versions of the search problem. In the
first section, our domain is unsorted and we can only get information by
comparing things. We will analyze the simplest algorithm, linear search. In
the second and third sections the domain is sorted. To solve this version of
the problem we'll improve linear search to jump search, then we'll improve
that to binary search. In the fourth section we'll explore what happens
when we change the model in four important ways.
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2.1 Linear Search

'Where shall I begin, please your Majesty?' he asked.
'Begin at the beginning,' the King said, very gravely,

'and go on till you come to the end: then stop.'

Lewis Carroll, Alice's Adventures in Wonderland

Let's first assume that we know nothing about the list to be searched and
the element we wish to search it for; let's walk through the entire analysis
task sketched in chapter one.

The Problem

We are given a list, L, of n elements and one more element, X, and the
problem is to decide whether X is in L. If X is in L we have to identify
at least one element of L that it's equal to.

The Model
Our environment will be the default environment given in chapter one

(page 13) plus the following assumptions.

"* All elements of L are unique (this assumption simplifies analysis).

"* We can compare X or any element of L with any element of L and
this comparison will tell us that the two elements are equal, the first
is less than the second, or the first is greater than the second.

" We can't find ordering information about X and the elements of L
except by comparing elements.

Our goal is to minimize the number of "three-way" (<, =, and >)
element-element comparisons done. This is the comparison-based model.

Note that, as with any model, merely defining it does not imply that all
search problems are dominated by, or even proportional to, comparisons.
This model only fits search problems on arrays. It implicitly assumes that
array access has constant cost, that comparisons are proportional to overall
run time, and that run time is the only thing that matters. The third model
assumption rules out using anything but comparisons to find X in L. For
example, in this restricted model we cannot assume that the elements of L
are numbers, find their average, and use that to deduce something about
X's location in L.
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The Algorithm

The first thing to do with a problem is to reduce it to something simpler
This idea is so important and occurs in so many guises in analysis that it
deserves a name:

The reduction strategy: Try to reduce the problem to simpler
subproblems, even if this results in many subproblems.

Mathematicians have a special way of saying the same thing: reduce the
problem to something already solved. There's even a special mathematical
joke expressing the idea: Alice and Bob have to complete two tasks in
the minimum time possible. The first task is to make tea given kettles,
cups, and teabags. Both do the obvious. The second task is the same
except that the kettles are initially full. Bob makes tea as before except
that he doesn't have to first fill his kettle. However Alice takes less time
by emptying her kettle and observing that she has reduced the problem to
one already solved!

We've already used this reduction strategy when designing I-IHoI (algo-
rithm 1.1, page 16).

Now what could be simpler than the given search problem on n ele-
ments? Simple; the same search problem on n - 1 elements! In one com-
parison we can reduce our uncertainty about the position of X in L by
at least one. Thus, there is a simple brute force and ignorance algorithm
solving this problem: compare X to each element of L. This is linear
search. (See algorithm 2.1.)

LINEAR SEARCH (List, lower, upper, X)
{ Look for X in List[lower.upper].
Report its position if found, else report 0.
upper > lower > 0. }

if List[lower] = X
then return lower
else

if lower = upper
then return 0
else return LINEAR-SEARCH (List, lower + 1, upper, X)

Algorithm 2.1
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Analysis

In the next five subsections we'll find an upper bound on the worst cost
of the algorithm, a lower bound on the worst cost of the problem, and
then corresponding bounds on the average cost.

The Worst Cost

Let f(n) be the number of comparisons LINEARSEARCH does when finding
X in a list of size n. The following recurrence models the worst cost of
LINEARSEARCH.

f(n) f(n-)+l n>1

Since, if we only have one element in L then it costs one comparison to tell
whether X is in L, and if we have n > 1 elements, then in one comparison
we reduce the problem to the same problem but on n - 1 elements.

In analysis we often have to estimate the growth rate of a function
defined by a recurrence. Sometimes we end with a recurrence because
we started with a recursive algorithm. However many algorithms are nat-
urally iterative and it's sometimes easier to model an iterative algorithm
as if it were recursive. For example, algorithm 2.1 is an iterative version
of LINEAR-SEARCH. The two versions of the algorithm do the same element-
element comparisons and in the same order and both are modelled by the
above recurrence.

LINEAR-SEARcH (List, lower, upper, X)
{ Look for X in List[lower.upper].
Report its position if found, else report 0.
upper > lower > 0. }

index *- lower
while upper > index and List[index] $ X

index -- index + 1
if index > upper

then return 0
else return index

Algorithm 2.2
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This is a simple recurrence and it is easy to see that its solution is
f(n) = n. Since we already know the expected answer we can use induc-
tion to prove it. (Compare the proof on page 21.)

We wish to show that

S1 n=1
Sf(n-)+l n > 1 f(n n

Basis step: f(1) = 1 so f(n) = n when n 1.
Inductive step: Suppose that for all k < n, f(k) = k. Then since n > 1,

from the recurrence we must have that f(n) = f(n-1)+1. But n > n - 1.
Therefore f(n) = (n - 1) + 1 = n.

Hence, if the inductive assumption is true for all k < n then it is true
for n as well. Thus, the theorem is true for all n.

Now, what if we didn't know the exact form of f(n)? This is where
induction falls to the ground with a loud crash. Induction is only useful if
we already know the answer. This is like the difference between guessing
and checking discussed in chapter one (page 53). Once we think we
know the answer, we can use induction to check that it is correct.1

So if we've already guessed the answer why bother to check it? Well,
we may have guessed wrong; checking reassures us that we're right. Also,
if the proof fails then we know we guessed wrong and have to start over.
Finally, producing a proof is like producing a lower bound; it forces us to
think about what we're doing, and perhaps suggests a better, less problem
dependent, way to do the same thing-a way that we can then use for other
problems. Our first solutions are usually heavily problem dependent-we
think of a solution based on simple cases then see what's wrong with it,
refining the original solution to fit the general case by adding qualifications
and extensions. But often there is a cleaner, less problem dependent,
solution. Clean solutions are more likely to be useful elsewhere; the best
algorithms have little to do with the original problem.

To solve a problem we can't allow it to intimidate us; we'll just attack
it and bull our way through. Only after finding a solution will we look
for ways to turn the direct assault into a clever flanking maneuver showing
how best to outwit the enemy. Then this maneuver becomes part of our
arsenal.

One alternative when we don't know the exact form of f is to iterate
a few steps of the recurrence and try to guess the sum of the sequence of

1,You can always find truth with logic if you have already found truth without it." G. K.

Chesterton, The Man who was Orthodox.
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terms. Let's call this method substitute and guess. This example would go
something like this:

f(n) = f(n-1)±+ [=f(n-1)+1]

= {f(n-2)+1}+1 [+f(n-2)+2]

S{{f(n-3)+1}+1}+1 [=f(n-3)+3]

= f(n - i) + i (this is a guess)

Long Pause] Why is this a guess and not a proof?

With this guess in hand we ask: when does this stop? The answer is:
at the boundary. We want an i that makes n - i equal to 1 (because we
know the value of f(1)). So i must be n - 1. Thus,

f(n) = f(n - (n - 1)) + n - 1 = f(1) + n - 1 = 1 + n - 1 = n

Now we can use this guess in a proof by induction if need be. This is a
guess and not a proof because the ellipsis (the ". . . ") hides an unbounded
number of steps. Since we hope to convince other people of a fact using
a proof, a proof must have a finite number of steps. If not, we would
never finish convincing them of the fact!

Another way to solve recurrences is to guess the general form of the func-
tion then solve the equations the recurrence generates for that form. Let's
call this method guess and test. For example, suppose we guess that f is
linear. Thus, f(n) = rn + s for some r and s. Then, from the boundary
value of the recurrence, we know that

r+s=I

From the recurrence itself we know that for all n greater than 1

rn + s = r(n - 1) + s + 1

This implies that r = 1, which in turn implies that s = 0. Therefore f(n) =
r n + s = n is a solution to the recurrence with boundary value of 1 when
n = 1.
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Long Paus Will guess and test always work? Show that it will work for f(n) = rn 2 +
sn + t but not for f(n) = rn 2 + s.

So LINEAR SEARCH uses up to n element-element comparisons; other
comparisons don't count within the model. Is this worst case optimal?
(Remember to add "within this model," under your breath when claiming
optimality. ) Unsurprisingly, LINEAR-SEARCH has optimal worst cost ("within
this model").

The Lower Bound on the Worst Cost

To prove that LINEAR-SEARCH has optimal worst cost we can show that if
any algorithm tries to do the same job in less time (that is, if it tries to
use fewer comparisons), then it must be incorrect. Thus, if only element-
element comparisons matter, no algorithm is better than LINEAR-SEARCH in
the worst case.

Suppose a search algorithm does n - 1 (or less) comparisons of X
with the elements of L. Since there are n elements in L, it must have
avoided comparing X with at least one element of L, say L [i]. We can
now arrange it so that the algorithm answers that X is not in L when
X is in fact in L by constructing the following input and watching the
poor algorithm choke. Let L be a list of n different elements and let X
equal L[i]. The hypothetical algorithm never compares X to L [i] so it will
decide, incorrectly, that X is not in L.

Since such an input is legal within our model, any algorithm that sup-
posedly decides whether X is not in L in less than n comparisons must be
incorrect. Since this hypothetical algorithm determines this fact it cannot
be correct. Hence every algorithm to search for X in L must do at least
n comparisons. This is a proof by contradiction.

Ps Do you believe this proof?

Such a seemingly obvious lower bound required a reasonable amount
of effort. Unfortunately, the above argument is wrong. The first error is
to assume that if an algorithm skips L[i] on one run then it will always
skip L[i]. The second, more subtle, error is to assume that the only way
an algorithm can gain information about the elements of L is by compar-
ing them with X. This is not correct because the algorithm can gain infor-
mation by comparing elements of L to each other. The model does not
disallow these comparisons.

We can patch the first error by observing that the algorithm doesn't have
to skip the same i every time; once it skips some i then there is an input
that it answers incorrectly.
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The second error is more difficult to fix. We could restrict our model
to only allow comparisons between X and elements of L but it would
be better if we didn't have to unnecessarily restrict our results. Suppose
an algorithm does k > 0 comparisons not involving X (the preprocess-
ing stage) and then I comparisons of X with elements of L (the searching
stage). We want to show that k + 1 > n.

Pause Couldn't an algorithm do something clever in the preprocessing stage so
that it wouldn't have to compare X to a large number of elements?

Now, when we've finished the preprocessing phase we've split L into
some number of pieces, say m. A "piece" is a set of elements every two of
which have been connected by some sequence of comparisons. We start
with n separate pieces and we need at least one comparison to connect
any two pieces (and so decrease the number of pieces by one). Since
there are now m pieces then we must have used at least n - m comparisons
to build them. Therefore, k > n - m.

Pause Show that n_>m_>1 and that m =n 4==> k=0.

When we come to search with X we must compare X to at least one
element from each piece, otherwise X may be in a piece we didn't look
at. Thus I > m. Therefore, k + I > n. So, if we spend time making L
easier to search then we will not spend less time than if we had just done
a linear search for X.

Despite the two errors in our original argument we only need the last
two paragraphs to establish the lower bound; they amount to saying that
we can't avoid at least looking at the input. This is a simple lower bound
argument-so simple that we can apply it to almost all problems, even
to those that don't involve comparisons. This bound is the input-output
lower bound.

Pause You might complain that there is nothing in the model about having two
phases to the search. Show that it is not necessary to restrict the model.

Probability Theory

To talk about the average cost we first have to agree on how to describe
uncertain events. Probability theory is all about expressing the uncer-
tainty of complicated events in terms of the assumed probability of simpler
events. Although the basic ideas go back to the sixteenth-century Ital-
ian mathematician Gerolamo Cardano, as a discipline probability theory is
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thought to have started in France in the seventeenth century when a gam-
bler asked a mathematician to figure out the best way to bet when playing
dice. The date was 1653; the gambler was Antoine Gombaud, the Cheva-
lier de Mere; and the mathematician was Blaise Pascal. Besides mathemat-
ics, Pascal contributed to philosophy, experimental physics, and computer
design (he built the first calculator). The programming language Pascal is
named after him.

The sample space of an experiment is the set of all outcomes of the
experiment. Let's agree to delimit sets using curly braces. The sample
space of the "experiment" of tossing a coin is {heads, tails}; the sample
space of the "experiment" of pulling a card from a deck of cards has fifty-
two outcomes; the sample space of the "experiment" of whether my car
will start tomorrow is {starts, doesn't start}.

You may object that a coin could fall on its edge, or that it could be
tossed so hard that it enters earth orbit, or that it could fall into a vol-
cano. No problem. All this means is that we didn't include all the possible
outcomes of the experiment. Usually we will allow only a finite number
of different outcomes for any experiment. For example, the tossed coin
experiment could have the sample space {heads, tails, something else}.

An event is a subset of the sample space. An event is a set of outcomes,
and an outcome is an instance of an event if it's in that set. For instance,
when drawing a card we could be interested in the event of selecting a
face card. There are sixteen outcomes that belong to the face-card event.
Or perhaps we're interested in the five events: "a six," "a spade," '"an ace,"
"any other card," or "any card." Several of these events share outcomes. If
two events share no outcomes they are disjoint.

For each experiment we associate a probability with each event. The
probability of an event is the ratio of the number of outcomes favorable to
the event divided by the total number of possible outcomes. Let's adopt
the convention that a bold-face P (P) means "the probability of." Thus,
in our card example, the probabilities of the five events are:

4 13 4
P(a six) = 5, P(a spade) = 5-2, P(an ace)= 5-2

33 52
P(not a six and not a spade and not an ace) = 52 , P(a card) 52

Two events are independent if the probability of each event does not
depend on the other occurring. So if we toss a coin then pull a card, the
event "heads" should be independent of the event "king of clubs." This is
not the same as saying that the two events are disjoint. Alternately, two
events are independent if the probability of their joint occurrence is the
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product of the probabilities of their separate occurrences. That is, "heads"
and "king of clubs" are independent events if

P(heads and king of clubs) = P(heads)P(king of clubs)

There are several things to note about the definition of probability. First,
it assumes that there are only a finite number of possible outcomes; we
may also define probabilities over infinite sample spaces. Second, it forces
the probability of any event to be a number between zero and one. Third,
it implies that the probability of any one of two disjoint events happening
is the sum of the probabilities of the events. (This is the sum rule.) That
is, if A and B are disjoint then

P(A or B) = P(A) + P(B)

Finally, it assumes that outcomes are equally likely-a concept we need
probability to define!

Like any model of the world we start by making assumptions about the
world then we begin calculating based on the model. If we gather evi-
dence that the model is not adequately predicting real behavior, we change
the model. In this case we would have to go back to the experiment and
ask whether the assumption of equal likelihood of outcomes is reasonable.
Perhaps we're playing cards with a cardsharp and our estimate of the like-
lihood of aces doesn't match their actual frequency!

By now you may have another objection: we may have no way to gather
empirical data because the experiment may not be performable. Or it may
be one of a kind. For example, in six billion years the sun will either go
nova or it won't. We won't consider such experiments just yet. There are
more objections to be made-as Pascal would say, probability is a dicey
subject-but let's stop here for now.

The Average Cost

How many comparisons does LINEAR SEARCH do on average? Before we can
talk about an average input and the average behavior of an algorithm, we
need to know the probability of occurrence of each possible input. Since
we usually don't know this, let's assume that X is equally likely to be any
of the elements of L. This is reasonable since, within our current model,
we don't know anything about the elements of L. Note that this doesn't
force X to actually be in L.

Pause Why?
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This assumption is an application of the following strategy:

The simplicity strategy: When in doubt assume as little as
necessary.

This strategy has several names: in science it is called Occam's razor, in
statistics it is called the principle of indifference, and in systems design it
is called the KISS (keep it simple, stupid) principle. (Perhaps instead of
"sealed with a kiss" analysts should sign their love letters SWAK-simplicity
will aid knowledge.)

Let's also assume that the only thing varying in the input is X's position
in L, if it is in L. This assumption is reasonable because we are only inter-
ested in those inputs that make LINEAR-SEARCH behave differently (that is,
inputs requiring different numbers of comparisons). To see that this is so,
suppose we let both X and L vary. Since our model ignores all attributes
of the input elements except for their relative sizes, all LINEAR-SEARCH cares
about is the relative order of occurrence of the elements in L. It is not
necessary to consider all possible Ls since all that matters to LINEAR SEARCH

is the number of elements that precede X in L (if X is in L). No matter
what the element is, it costs exactly one comparison to decide if it's equal
to X. Also, the cost to find X varies only as X's position in L varies.
Thus, we may treat L as fixed and allow X to vary its position in L, if it
is in L.

Okay, let's think of the number of comparisons LINEAR-SEARCH does as
the outcome of an experiment. We have assumed two things:

"* X is equally likely to be any element of L, and

"* the only thing varying in the experiment is X's position in L, if it's
in L.

There are n + 1 events: X = L[1], X = L[2], ... , X = L[n], and
X ý L. These events are disjoint since within our model each element
of L is unique. Thus all n + 1 probabilities are greater than or equal to
zero and they must sum to one.

Ps Why?

Since X is either in L or it isn't, and since all the probabilities sum to
one, then

n

P(X 0 L) = 1 - ZP(X = L[i])
i=1

Let ki be the number of comparisons LINEAR-SEARCH does when X
equals L[i]. Let k0 be the number of comparisons it does when X 0 L.
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If X happens to equal L[i] then LINEAR SEARCH takes i comparisons to
find it. So, Vi < n, ki = i. If X is not in L then LINEAR-SEARCH does
n comparisons to determine this, so k0 = n.

The average of n numbers is the sum of the numbers divided by n.
So the average number of comparisons is the number of comparisons for
each disjoint event weighted by the probability of that event. Let f(n)
be the average number of comparisons LINEAR-SEARCH uses to search a list
of size n. Let pi be the probability that X equals L[i] and let Po be the
probability that X is not in L. Then

n

f(n) = koP(X V L) + kiP(X = L[i])
i=1

n

= npo±+ ,ipi
i=1

Since X is equally likely to be anywhere in L (by assumption) then
Vi, j !_ n, pi = Pp. Let this common probability be p. Thus Po = 1-np.
Therefore

n

f(n) = pon + Zip
i=1

n

= pon+p -i
i=1

n(n + 1)
= pon~p 2

(1 - po) n(n + 1)
n 2

n + 1 + po(n - 1)
2

Since 1 > Po _ 0 then, with the assumption that X is equally likely to

be any of the elements of L, we have that

n > f(n) > (n+l)
- - 2

Now various choices for Po give us different averages (see table 2.1 ). As
Po increases from 0 to 1 the average search time goes up linearly (see
figure 2.1). As the table shows, if X is equally likely to be any of the
elements of L and
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"* if X must be in L, then LINEAR-SEARCH examines roughly half of L.

"* if X is equally likely to not be in L as to be any one of the elements
of L, then LINEAR-SEARCH examines roughly half of L.

"* if X is equally likely to be in L as to not be in L, then LINEAR-SEARCH
examines roughly three-quarters of L.

"* if X cannot be in L, then LINEAR-SEARCH examines all of L.

Po p f(n)

1 (n + 1) n
n 2 2

1 1 n(n + 3) n
n+1 n+1 2(n +1) 2

1 1 (3n + 1) 3n
2 2n 4 4

1 0 n

Table 2.1 Average cost of linear search

lim f(n)
n--oo n

1

I :

0 1 Po

Figure 2.1 Average behavior of linear search for large n
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In practice we may know a lot about the probability distribution of the
chances of X being each element of L (that is, all n + 1 pis). In that
case the above analysis will have to be changed, just as our assumptions
about the chance of aces change if we play cards with a cardsharp.

Although the average cost is important there are three problems with
average cost analysis. First, the average cost is usually harder to find than
the worst cost. Second, for the average to be meaningful we also need a
measure of the spread of values around the average; we need a measure
of variance as well as the average value. Finally, we usually have to guess
the probability distribution, so the calculated average is just a guess. For-
tunately there is often a way out of this last bind: we can randomize the
algorithm to avoid the problem (see section 2.4, page 123).

The Lower Bound on the Average Cost

Given a problem, P, a model M, the set of algorithms, AM, solving P
within M, together with the set of all size n instances of P, In, and a cost
function fA,

the lower bound on the average cost of P = min{ P(I)fA (I)}

where P(I) is the probability that I occurs.
Intuitively, the reason LINEAR-SEARCH uses up to n comparisons is that

any algorithm solving the problem must compare X to every element of L.
Comparing elements of L can reduce these comparisons but only by replac-
ing them with at least as many other comparisons. So let's break the proof
that LINEAR-SEARCH is optimal on average into two parts: first we'll assume
that we can only compare X and elements of L, then we'll see that other
comparisons cannot reduce the average number of comparisons needed.

First, suppose that every average case optimal algorithm can only com-
pare X with every element of L. The only thing mattering to these algo-
rithms is X's position in L, if it's in L. If every comparison must involve X
then the sequence of comparisons determines one of the n! ways of arrang-
ing the n elements of L. If X is equally likely to be any element of L, if
it's in L, then for any arrangement of the elements of L the average search
time is the same as LINEAR SEARCH. Thus, if all comparisons must involve X
then LINEAR-SEARCH has optimal average cost.

P e Why does every arrangement give the same average?
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Now we have to show that every comparison must involve X. We could
show this using an argument similar to the one we developed for the lower
bound on the worst cost. Instead, for variety, let's see how the probabili-
ties change after a comparison between two elements of L and develop a
proof by contradiction. Consider any algorithm comparing two elements
of L, say L[ij and L[j]. Suppose that L[iI < L[j] (the case L[i] > L[j] is
symmetric). We want to show that we won't gain any information useful
to us on average, so we are wasting the comparison.

Now, after the comparison, do we have any more reason to believe
that X is likely to be in L? If so, then perhaps our algorithm could shorten
its computation time on average. If the algorithm doesn't know that X lies
between L[i] and L[j] then, because the events X = L[i], i = 1..n, are
independent, when we find that L[i] < L[j], the probability that X is in L
has not increased. X may be equal to L[i], equal to L[j], or unequal to
both. Thus if anything is to improve then the algorithm must already know
that X lies between L[i] and L[j] before the comparison of L[i] with L[j].

But if, before the comparison, the algorithm could infer that X lies
between L[i] and L[j] then it had enough information to tell whether
L [i] < L[j] or whether L [i] > L [j]. (In our model L [i] cannot equal L [j]. )
Thus, the comparison between L[i] and L[j] is redundant. Thus, any algo-
rithm comparing two elements of L cannot have optimal average cost.

Therefore every average case optimal algorithm can only compare X to
elements of L. Finally, since the algorithm must also work in the worst
case, it must compare X to every element of L. As we saw in the first
part of the proof, all such algorithms cost the same as LINEAR SEARCH, SO
LINEAR-SEARCH is optimal in the average case.

Programming

LINEAR-SEARCH is optimal in the worst case and average case, but only
within our narrow model; in practice we may further improve the algo-
rithm.

First, although the recursive and iterative versions cost the same within
the comparison-based model, in practice the iterative solution is superior
in most languages. Thinking recursively helps a lot while developing ideas
but few languages support cheap recursion.

Second, when coding algorithm 2.1 [p. 85] we are sometimes allowed to
fiddle with L. If so, then we should place X after the last position in L. We
can then get rid of the comparison in the while loop involving index and
upper, since X will always be found. We pay for this savings with an extra
element-element comparison, but only for unsuccessful searches. (Why?)
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Adding X to the end of L as a sentinel in this way lets us do two things.
We can test index against upper to determine whether we fell or were
pushed out of the loop, and we avoid problems with languages, like Pas-
cal, that don't allow partial evaluation of conditionals. In such older lan-
guages, both conditions in conjunctive "if' or "while" tests (tests like "A
and B") are evaluated even if the first is found to be false (and similarly
for disjuncts like "A or B") .2

Third, sometimes not only can we change L, but also L will typically
be indexed from 1 to n. In that case we can put X in L [0]. Then instead
of counting index up from 1, we can count it down to 0. Now we can
delete the while loop test involving index and upper, and we can delete
the last test and just return index. (Why?)

Finally, in practice a search routine is often only a small part of a larger
program. Thus we may know a lot about the kind of input it usually has to
deal with, so we should adapt the algorithm to the special circumstances it
finds itself in. For example, in a sequence of searches, the next element to
be searched for is commonly near the previous one searched for. In this
case we could keep track of where each search ends and start the next
search near that point.

As you can see, we can improve many things in special cases. None
of these nuances are part of the comparison-based model that we started
with, and each may improve search time. However there are three reasons
why we shouldn't worry about them until we've designed the algorithm.

First, each of the four improvements suggested above is special:

" recursive solutions may be faster than equivalent iterative solutions in
some languages (or iteration may not be supported at all);

" often we cannot change L when searching it-L may be part of a
larger structure that cannot be easily modified;

" in some languages we can't refer to the zeroth location of L because
there is no zeroth location to refer to; and

" the search algorithm may be independent, so it must expect any
input.

Second, worrying about special case improvements during design
obscures the algorithm and makes programming errors more likely. For
some reason many programmers never have time to do it right, but always
have time to do it over.

2People working on programming languages call partial evaluation of conditionals "short cir-
cuiting." It is part of the more general idea of "lazy evaluation:" don't evaluate something
until you have to.
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Finally, none of these changes affect the algorithm's growth rate-at most
they change its run time by an additive or multiplicative constant. For
large n, the worst cost of the (theoretical) algorithm and the (real) pro-
gram will be similar. So the moral is to design a general purpose algorithm
before looking for special case improvements.

2.2 Jump Search

Intuitively, a reluctant algorithm for a
problem P is one which wastes time in

a way that is sufficiently contrived to
fool a naive observer.

Andrei Broder and Jorge Stolfi,

"Pessimal Algorithms and Simplexity Analysis,"
Sigact News, 16, 3, 49-53

Now let's assume that L is sorted in increasing order. We're given an
element, X, and we have to determine whether X is in L. We could use
LINEAR-SEARCH again but we have more information than before, so perhaps
LINEAR-SEARCH is no longer optimal.

If we change LINEAR-SEARCH to test whether X is greater than each
element (instead of equal to it) then for many inputs search time will
improve. The way it is now, if X is not in L then we will always examine
all of L, but if X is not in L and we check whether each element is greater
than X then on average we will only have to examine half of L.

Pause Do you believe this?

Since L is in increasing order, if we ask whether X is greater than,
say, L [5] and it is, then, not only is X bigger than L [5], but it is also bigger
than L[1] to L[4] as well. So after only one comparison we have gained
five pieces of information!

Of course, the outcome could have been X = L[5] or X < L[5], but
those cases are cheaper than X > L[5] in the worst case (unless n < 10).
Immediately our danger antennae start quivering, since this would be too
much of a good thing; in the worst case the outcome of the comparison
will be that X is greater than L[5].

However, the same rule does not hold for all elements of L. For exam-
ple, if we query L[n], then in the best case X = L[n] or X > L[n] and
in both cases we can halt immediately. But in the worst case we would
have found out only that X < L[n]. So, in the worst case, comparing X
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with L[n] will give us only one piece of information. Big deal. Thus, Vf
we try to be too greedy we will lose in the worst case. Our task is to
determine how greedy is too greedy.

Pause What's the best element to query so that in the worst case we gain as much
information as possible? (See section 2.3, page 105.)

Consider the following scheme: choose a number k < n and repeatedly
ask whether X is greater than the next kth element in L. That is, interro-
gate L[1], L[k + 1], L[2k + 1], and so on. In this way, either we fall off the
end of the list or at some time one of the probed elements is greater than
or equal to X.

Ps Should we really start with L[11?

If one element reports that X is less than it then we use LINEAR-SEARCH
on the k elements between it and the last queried element. If we fall off
the end of the list then we use LINEAR-SEARCH on the elements from the
last probed element to the end of the list. This way we eliminate a large
number of the comparisons done in LINEAR-SEARCH. Note that k = 1 is the
same as LINEAR-SEARCH.

Now, in the worst case it's a bad idea to interrogate L[1] for the same
reason that it's a bad idea to interrogate L[n]. So let's modify the scheme
to interrogate L[k], L[2k], L[3k], and so on. This is jump search. k = 1
still behaves like LINEARSEARCH.

Ps In which sublist will X lie in the worst case?

How many comparisons does JUMP SEARCH (algorithm 2.3) do in the
worst case? At worst, X will lie in the penultimate sublist since all sub-
lists are equally hard to search (except possibly the last, which can be no

harder). The worst that could happen is that we have to get all the way
to the end to find out that X lies in the previous sublist (if k divides n
then the last sublist is the appropriate choice).

Thus, if (m + 1)k > n > mk then we will do up to m probes to find the

sublist that X must lie in (see figure 2.2). We will then do at most k - 1
comparisons to find X in that sublist. (Assuming three-way comparisons
that is. Algorithm 2.3 uses two-way comparisons for ease of coding [the
possible outcomes are < and _>], and it requires k two-way comparisons.)
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JUMP-SEARCH (List, lower, upperjump, X)
{ Look for X in List[lower..upper].
Report its position if found, else report 0.
List is sorted in increasing order.
upper > lower > 0; upper - lower + 1 jumpŽ 1. }

index <-- lower +jump - 1
while upper > index and X > List[index]

index , index +jump
if upper > index

upper ,- index
LINEAR-SEARCH (List, index -jump + 1, upper, X)

Algorithm 2.3

Thus we expend at most m + k - 1 three-way comparisons where m
satisfies the inequality

n
m + l> -n

We can express inequalities like this compactly using floor and ceiling func-
tions. The floor of x, [xJ, is the largest integer less than or equal to x.
The ceiling of x, [x], is the smallest integer greater than or equal to x:

[xJ=n 4==* n+l>x>n and Fx1=n -•== n>x>n-1

Thus, for 7r = 3.141..-,3 [it] = 3 and fir] = 4. For e = 2.718..., Le] = 2
and rel = 3. And for 0 = 1.618..., L4O = 1 and F41 = 2.

1 n

t t f t
k 2k ... mk (m + 1)k

Figure 2.2 Probes executed by jump search

Let f(n, k) be JUMPSEARCH's worst case number of comparisons. We
have established that

f(n,k) = m +k- 1 = [n] +k- 1

3Here are two mnemonics you can use to remember the digits of 7r (count the letters), they
begin: "How I need a drink, alcoholic of course, after the heavy chapters involving quantum
mechanics," Sir Arthur Eddington, and "Sir, I bear a rhyme excelling/In mystic force and magic
spelling," Bertrand Russell, A Mathematician's Nightmare.
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Jump Size (k)

n 1 2 3 4 5 6 7 8 best k least cost

1 r-] 1 1
2 F2 F2 12 2

3 3 W21 3 2 2
4 4 F3] 4 23 3
55 5 F34 5 23 3

6 6 F-4 F4 n4- 5 6 234 4

7 7 E E F4 5 6 7 234 4
8 8 5 [] 5 5 6 7 8 3 4

Table 2.2 Cost of jump search for different jump sizes

From table 2.2 we see that k = 2 is better than k = 1 in the worst case.
The above analysis assures us that this is true for all larger n. Thus some
choices of k are better than others. Also, looking at the table we see that
the best k varies as n varies (the best values of f (n, k) are boxed). This
suggests that we should let k be a function of n instead of a constant.
Which k should we choose?

Square Root Search

Now we'd like to find the best jump size. That is, we require

min {[n] +k-1}
l<k<n

This seems difficult to do but, fortunately, there is no shortage of goodies in
our analysis knapsack! The second derivative of a function is the derivative
of the derivative of the function; it's the growth rate of the growth rate of
the function. In terms of time, the derivative is speed and the second
derivative is acceleration. We can often find the maximum or minimum
of a differentiable function by setting its derivative to zero if the second
derivative is not also zero.

In figure 2.3 the first derivative is zero at both the maximum point and
the minimum point of the two functions shown. In the first graph the
second derivative is negative, since the first derivative decreases across a
max point (it's first positive, then zero, then negative). But in the second
graph the second derivative is positive, since the first derivative increases
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across a min point (it's first negative, then zero, then positive). So we
can use second derivatives to, er, differentiate maxima from minima.

f'= 0

f <0 f'>0

f' = 0

f"l < 0 f"i > 0

Figure 2.3 Differentiating up from down

Unfortunately we cannot just differentiate f(n,k) because f(n, k) is
defined only when k is an integer, and f(n, k) contains a floor function.
How can we differentiate a function with floors? Well, what if we just
ignore the floor and turn the function into a real-valued function defined
over the real numbers? We will be off by no more than one comparison
if we ignore the floor function and treat the minimization as

min n +
<xn{-x+x} -1

Pas Can you prove this?

Consider the function f(x) = n/x + x mapping real numbers to real
numbers. Suppose the minimum of this function occurs at the point x r.
Then

1 1 n n n nFr]i r > [r] - 1== - - -> - -r +r > F+ r]-1
r -Fri r -F ri r Fri

But the minimum occurs at r, so

n + [r] > - + r

Therefore nnn
- + r +1> + [r]> + r
r [r] r

Therefore, if we can find the point at which the real-valued function is
minimum, then taking the ceiling of this point provides a function value
within one comparison of the minimum possible. (However this function
value is not necessarily an integer. )
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Now, if we have to minimize a function with a floor or ceiling we can
use the following relations

minf(x) _ minLf(x)j and minFf(x)] =[minf(x)]
x x x X

(Because of our conventions on page xxvi, "min" is short for "the mini-
x

mum value where x ranges over the real numbers.")

Pause Why are these relations true?

Therefore we can find f', set it to zero, solve for x, then check that
that point gives a minimum by seeing if f" > 0.

n n
f(x) = - + x ==- f'(x) -x + 1

f'(x) = 0 ==: x 2 =n €=•: x ± v'n

2n 5 >0 ifx= v-

<0 ifx=-v/n-

Thus x v/3In- gives the minimum. (See figure 2.4.)

f(x)

2,/n -_1

- x

Figure 2.4 f(x) =n/x + x - 1

Thus we should probe every [ 1v-]th element. This "square root search"
is just JUMP-SEARCH for a particular value of k, so we can find its worst cost
by substituting [v/ 1 for k in the worst cost of JUMP-SEARCH.
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Let (x) be the nearest integer to x. (Note: This is undefined if x =

n + 1/2. ) It is possible to show that

[ n I ( ( V'H) if n -=k'or k(k ±+1)

- (v) - 1 otherwise

Thus square root search takes no more than (V/) + vn1 - 1 comparisons
to find X in L. Therefore we have cut n comparisons to roughly 2\/-_ - 1
in the worst case. This is a big improvement! Can we do better?

• Note that the work is least when we balance the work we do in the probing
phase with the work necessary to search a sublist. We don't want to do too
much work either probing for the correct sublist or searching that sublist-
and the two are nearly equal when we use about I-n probes, giving us a
sublist size of about V/-n. This idea is so useful that we'll name it:

The balance strategy: Given a problem that we can divide into
related subproblems, make the subproblems equal in effort.

In every job there is some irreducible amount of work that must be
done; if we try to get off too easily on one part of it we will just have
to work that much harder on others. Symmetry tells us that the grass is
always at least as brown on the other side of the fence. (This is the law
of conservation of hassle. )

We can use the balance strategy to reduce the work even further. Intu-
itively, the first phase of the search pretends that there are only \/h ele-
ments; we're wearing V/n-sized glasses-we can't see anything smaller than
blocks of v/H elements. In the second phase we use normal-sized glasses-
we can see every element. If we use three pairs of glasses, what size
glasses should we use?

Suppose we do k comparisons with the first pair to find X to within
n/k elements, then 1 comparisons with the second pair to find X to within
n/kl elements, and finally, n/kl comparisons with the normal-sized pair.
Balancing suggests that we let k = I = n/k1. This implies that n = k3 .
Thus k = I = n/kl = Cn. Aha! The search now takes no more than
roughly 3fin comparisons! (3C/i is less than 2v/i, Vn > 12. )

Long Pausel Extend this idea to get logarithmic time search. (Hint: Show that
minx V = e In n. Recall that n = e" " and differentiate.)

x

Like all strategies, the balancing idea is not a cure-all. For example,
how can we balance the work in the towers of Hanoi problem? Never-
theless, it is the principle behind several strategies in analysis, the best
known is divide and conquer We turn next to an important application
of this strategy.
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2.3 Binary Search

Since most concepts of science are
relatively simple (once you understand

them), any ambitious scientist must, in
self-preservation, prevent his colleagues

from discovering that his ideas
are simple too.

Nicholas Vanserg,
"Mathmanship," The American Scientist, 46, 3, June 1958

We left the last section with a search strategy that was an improvement
over LINEAR-SEARCH. However we do not yet know how much more we
can improve our worst cost. Now we're going to reduce the worst cost
to [lg nj + 1 comparisons using binary search. Binary search works by
dividing the current sublist (the set of elements that could contain X
up to this point) into almost equal halves. Since L is sorted we can
easily do this by querying the middle element. Independent of the
answer we then have to search at most half of the remaining list. As
with LINEAR SEARCH, BINARY SEARCH can be recursive (algorithm 2.4) or
iterative (algorithm 2.5).

BINARY-SEARCH (List, lower, upper, X)
{ Look for X in List[lower. upper].
Report its position if found, else report 0.
List is sorted in increasing order. upper > lower > 0. }

if lower = upper
then

if X = List[lower]
then return lower
else return 0

else
mid *-[ (lower + upper)/2j

if X > List[mid]
then return BINARY-SEARCH (List, mid + 1, upper, X)
else return BINARY-SEARCH (List, lower, mid, X)

Algorithm 2.4

This is a natural generalization of JUMP-SEARCH. Instead of requiring that
gap sizes between successive queries be fixed (although they may depend
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on n, once chosen they are all the same size) we allow their sizes to vary.
Surely the early jumps should be large and the later jumps small-initially
we have no idea where X is in L and finally we must narrow the possible
sublist to one element. Since we can do only one comparison at a time,
then, applying the balance strategy, every sublist will be half as big as the
last. (The ability to use binary search divides the set of people into those
who halve and those who halve-not. )

BINARY-SEARCH (List, lower, upper, X)
{ Look for X in List[lower..upper].
Report its position if found, else report 0.
List is sorted in increasing order. upper > lower > 0. }

low - lower ; high ý-- upper

while high > low
mid -- [(low + high)/2]
case List[mida

low -- mid + 1

return mid

high *- mid- 1
return 0

Algorithm 2.5

Let's analyze the iterative version of BINARY-SEARCH (algorithm 2.5). Let
f (n) be the worst cost to find X in n sorted things using BINARY.SEARCH
then 1 n=1

f~~n) = (Ln/2J) + 1 n > 1

since in one three-way comparison we eliminate at least [n/2] elements
from consideration (see figure 2.5).

1 nt

Figure 2.5 First probe of binary search

Pause Is this recurrence correct?
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When we compare X to L[[(n + 1)/2]] one of three things can happen.
If X is in L at all then either it's equal to the middle element, it's in the
lower sublist of L, or it's in the upper sublist of L.

Now here's how to derive a recurrence modelling the worst cost of any
algorithm that splits its task into three pieces. If f(n) is the worst cost of
the algorithm and we do some amount of work g(n) to divide the problem
into three pieces then

f(n) = g(n) + work to solve first piece +
work to solve second piece + work to solve third piece

However, for BINARY-SEARCH g(n) = 1 (the comparison to the middle
element) and the three subtasks are disjoint. Further, the middle subtask
involves no further work (it occurs when X is equal to the middle ele-
ment). Therefore the worst cost satisfies the recurrence

f(n) = 1 + max{f (size of first piece), 0, f(size of third piece)}

= 1 +-max{f([(n + 1)/2J - 1),f(n - [(n + 1)/2J)}

Looking at table 2.3 we see that for n < 8

[n/2J+1 >_ [n/2] _ [n/2j, [(n +)/2J = [n/21 , and [n/2]+[n/2] = n

These three relations are true for all n.

n 1 2 3 4 5 6 7 8

Ln/2i 0 1 1 2 2 3 3 4

Fn/2] 1 1 2 2 3 3 4 4

Table 2.3 Floors and ceilings of n/2

P e Why is that true?

Now it's reasonable to assume that f is non-decreasing because it's
unlikely that adding more elements will decrease the search time. If f
is non-decreasing, the maximum value will be f of the size of the larger
of the two remaining pieces. But

n - [(n + 1)/2j = n - [n/21 = [n/2J

and
L(n + 1)/2j - 1 = Fn/2] - 1 <_ [n/2]
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Therefore the upper half is always at least as big as the lower half, so it
will give the worst cost. Therefore

f(n) = 1 + f(Ln/2])

Computing a few values we might guess that the solution of the recur-
rence is

f(n) = Llgn] + 1

(See table 2.4; compare with table 1.3, page 27.)

n 1 2 3 4 5 6 7 8

f(n) 1 2 2 3 3 3 3 4

Table 2.4 Cost of binary search

Ps Try to prove this before reading on.

Let's do some napkin math to get a feel for how fast the function grows.
First, throw away the floor function to get

f n 5 1 n l
f(n)•{ f(n/2) + 1 n > 1

We can do this because n/2 >_ Ln/2] and we have assumed that f is non-
decreasing, so f(n/2) >_ f(Ln/21). In fact, there is equality if n is even,
so, if n is divisible by any power of two < n (that is, if n is a power of
two) we can substitute and guess

f(n) = f(n/2) + 1 [=f(n/21) + 1]

= {f(n/4) + 1} + 1 [= f(n/22) + 2]

- {{f(n/8)±+}+1}+1 [=f(n/23 )+3]

= f(n/2i) + i (this is a guess)

It's clear what's going on here: every time we divide n by two we add
one. We can divide n by two no more than lg n times before reaching
one since Ig n is the number of times we must multiply two by itself to
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get n. This would leave us with lg n ones added to f(1). But f(1) = 1.
Therefore

f(n) = f(1) +Ign = Ign + 1

Now as a check on our estimate let's prove that f(n) = lg n + 1 for the
simplified recurrence. This is easy to do by induction. We don't need to
show all the steps except to note that

f(n/2) + 1 = (lg(n/2) + 1) + 1 = (lgn - 1 + 1) + 1 = lgn + 1 = f(n)

Now since f is non-decreasing and n = 2lgn < 2[Ignl, we know that
f(n) < f( 2 rlgnl). But we have just seen that f( 2 i) = i + 1; therefore

f(n) •_ [lgnl + 1

Thus, BINARY-SEARCH never does more than flg nl + 1 comparisons.
This trick of turning a recurrence equality with a floor into an inequality

with no floors is very useful. It will always work if f is non-decreasing.

Pue What can we do if the recurrence involves [n/21?

This ballpark calculation 4 is good enough for most purposes but we can do
better-we can determine the exact worst cost of BINARY-SEARCH for all n.
We first expand the recurrence one step

f(n) = f(Ln/2])+ I

= f(LLn/2J1/2J)+1+1

Yikes! How can we simplify [[n/2J/2]? It should be close to n/4 and
calculation shows that it's equal to Ln/4] for n up to 8. (Check this.)

Pue Is L~n/2j/21 = Ln/4]?

When testing the equality we observe that both functions change value
only at multiples of four (at least this is true for n < 8; did you check?).

4Ballpark calculations are not calculations done in ballparks, but calculations to tell us whether
we're in the ballpark (or way off base!).
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BOB, WHO NEVER.( UTE GOT THE KNACK
OF NAPKININO, RESORTED TO CUSTOM NAPKINS

Let k = Ln/4J, then n = 4k + I where 4 > I > 0. Therefore

[n/2J = [(4k + l)/2J = L2k + l/2J = 2k + LI/2J (since 2k is an integer)

SLLn/2J/2J = [(2k + LI/2J)/2J = k + LLI/2J/2j (since k is an integer)

Now since 4 > I > 0 then 2 > 1/2 > 2. Thus, 1_> L[/2j > 0. Therefore,
0 > LLI/2J/21 0 0. So, L[l/2J/2] = 0. Thus, LLn/2i/2] = k = Ln/4J.

We can compress this argument to:

k = [n/4J = k + 1 > n/4 > k

= 2k+2 > n/2 > 2k

= 2k + 2 > [n/2] > 2k

== k + 1 > Ln/2]/2 > k

S[L[n/2J/2j = k = Ln/4j

Pause use the same argument to show that L[n/lIJ/mJ = Ln/lmJ.
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Now we can proceed as before, but this time with exact values:

f(n) = f([n/2J) + 1 [=f([n/21j) + 1]

= {f([n/4j) + 1} + =f([n/2 2j) + 2]

= {{f([n/8j)+1}+1}+1 [=f(kn/23j)+3]

= f([n/2'j) + i (this is a guess)

It is straightforward to show that [n/2ij = 1 precisely when i = [ig nj
and therefore, f (n) = [lg nJ + 1. Therefore BINARY-SEARCH takes no more
than LIg nj + 1 comparisons.

lg n is an even better improvement over v@/1 than v11 is over n since n
grows relative to Ig n as 2n grows relative to n. Although n is usually
considered to be a slowly growing function, n is exponentially greater
than lg n (see table 2.5 and figure 2.6). Can we improve our search time
still more? Is Vg n possible? Is constant time possible?

n Linear Search Square Root Search Binary Search

15 15 6 4
255 255 30 8

4095 4095 126 12
65535 65535 510 16

1048575 1048575 2046 20

Table 2.5 Growth rates of three search algorithms

x

lg x

Figure 2.6 Searching better and faster
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Decision Trees

We shall now see that binary search is optimal within the comparison-
------ based model. Any algorithm in the comparison-based model that searches

for X in L performs a sequence of comparisons. This sequence may vary
depending on the input, but suppose that for any one input the sequence
is always the same. Such an algorithm is predictable; it will always behave
the same if given the same input. 5 Our lower bound will apply only to
predictable algorithms in the comparison-based model that guarantee to
find X in L.

In deriving the lower bound we shall see that any predictable search
algorithm will do at least Llg nJ +1 comparisons involving X. Any algorithm
is free to compare elements of L but such comparisons are senseless-since
L is sorted we already know their outcomes. Nevertheless, in proving a
lower bound we must allow for all algorithms in the model, even silly
ones. However we can't assume that every algorithm must do comparisons
between elements of L so we don't bother to count such comparisons.

Consider any predictable search algorithm, let's call it A. A must have
a first comparison involving X and some member of L, say L [i]. Further,
A is predictable, so no matter what the input is A always does this com-
parison first (amongst all comparisons involving X). If it turns out that
X = L[i] then A may halt since it now has proof that X is in L, and it
knows where. Of course, A may choose to continue for some bizarre rea-
son of its own, but we can't depend on it doing any further comparisons.

Now if X : L[i] then A knows that either X < L[i] or X > L[i]. In both
cases it must proceed (it can only halt when it's found X or exhausted L)
and eventually it must compare X to another element of L. However, A
now has the option to make this second X comparison contingent on the
outcome of the first X comparison. If X < L[i] then suppose the new
comparison is between X and L[j], otherwise suppose it is between X
and L[k]. Because A is predictable, i, j, and k are fixed, independent of
the input.

At this point A is about to compare X with either L [j] or L [k]. We could
think of A as being in one of two states of mind depending on whether
X is bigger or smaller than L[i]. After A makes the next comparison it
can be in one of four states of mind. If we let each X comparison be a
branch point and the two possible subsequent comparisons (if any) be
two further branch points then we can produce a diagram of A's possible
states of mind-without the need to keep them all in ours!

5Often "deterministic" is used instead of predictable. But as we shall discover in chapter
seven, that choice leads to terrible nomenclature problems when we come to consider "non-
deterministic" turing machines.
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Call each comparison a node and call the comparisons that follow each
node the children of that node. The collection of nodes together with the
mapping telling which node is a child of another node is called a tree. A
tree modelling the algorithm's possible branches after each comparison is
called a decision tree. Trees are extremely important in computer science;
they grow in the unlikeliest places-and- for some reason always upside-
down.

Each node of a decision tree may have no children, one child, or two
children. The node representing the comparison of X with L[i] has a left
child if the algorithm does not halt after it compares X with L[i] and it
finds that X < L[i]. Similarly, it has a right child if the algorithm does
not halt if X > L [i]. So the left and right children represent the branches
the algorithm would take if X < L[i], and if X > L[i], respectively. For
example, figure 2.7 gives the beginnings of two decision trees. The first
models the first two possible comparisons of BINARY-SEARCH and the second
models a weird algorithm.

L[[ n+l l]?X L[n - 9]?X

4 m[[ n -j)?x Ljx[q l
L[L%'JJ4 L[~~~? I[53?X L[F3l'16?

Figure 2.7 The beginnings of two decision trees

Trees that can have at most two branches at each node are binary trees.
If we distinguish between left and right in a tree then the tree is ordered
and the intuition is that we can order the children of a node. By analogy
with living trees, a rooted tree is a tree with a special node called its root
(although all our trees are upside down by that analogy). A childless
node is a leaf. The level of a node in a rooted tree is the number of nodes
on the path from the root to the node; the root has level zero. The height
of a rooted tree is the level of the deepest leaf.

Now consider a decision tree representing the set of all possible se-
quences of comparisons that a particular search algorithm could perform.
The tree's height plus one is an upper bound on how many comparisons
the algorithm must do to find X in L.

P e Why?
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Also, there must be at least n nodes in the tree. If not then one ele-
ment of L, say L[i], does not appear in any comparison in the tree. There-
fore, there is no sequence of comparisons that tests whether X equals L [i].
Thus, there are inputs that the algorithm answers incorrectly. Thus every
position in L must appear in at least one node in the tree (if the algorithm
is correct!).

Pause Why does this argument work here and not when it was used for the lower
bound of LINEAR-SEARCH (page 88)?

Now if we can find a lower bound on the height of an n-node tree this
will be a lower bound on the search problem. Now comes the clincher:
as you may have guessed from figure 2.8 every height m rooted binary
tree has at most 2m+l - 1 nodes.

0

Figure 2.8 All ordered and rooted binary trees with up to four nodes

Ps Can you prove this?

To prove this let's try induction on height. Suppose every binary tree of
height less than m has no more than 2m -1 nodes (the induction hypothe-
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sis). Now, like Gaul, every rooted binary tree of height m is divided into
three parts: a root, a left subtree, and a right subtree (see figure 2.9).
The height of both subtrees is at most m - 1. Hence, by the induction
hypothesis, they each have at most 2 m - 1 nodes. Thus the whole tree can
have no more than 2 (2m - 1) + 1 = 2 m+1 - 1 nodes. This is an example
of proof by structural induction; we are using induction by exploiting the
recursive structure of binary trees.

<-m r ]_m-1

< 2m -1 < 2m -1

Figure 2.9 Every rooted binary tree has three parts

Now, since the number of nodes in the tree is greater than or equal
to n then 2m+l - 1 > n. Thus m + 1 > lg(n + 1). But m is an integer,
so m + 1 > [lg(n + 1)1. Thus, if we consider the set of decision trees
representing all search algorithms, then the minimum possible height is
flg(n + 1)1 - 1. Therefore there is at least one sequence of comparisons of
length at least [lg(n + 1)1 in any such decision tree. Hence any algorithm
in the comparison-based model must do at least Flg(n + 1)1 comparisons
in the worst case.

Finally, observe that

[lg(n + 1)] = Llg nJ + 1

Ps Why is this true? (Hint: For which n does [lg(n + 1)] change value? See
table 2.6.)

n 1 2 3 4 5 6 7 8

[lg n] 0 1 2 2 3 3 3 3
[ignJ 0 1 1 2 2 2 2 3

"Table 2.6 Floors and ceilings of lg n

Thus BINARY-SEARCH has optimal worst cost within the comparison-based
model.
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The Average Cost

To find BINARYSEARCH's average cost we need to assume two things about
X and L. Let's assume that X is in L, and that X is equally likely to be
anywhere in L. Now we can napkin to find an estimate. We will find X
in one probe if it's the middle element, in two probes if it's the quarter
or three-quarters element, in three probes if it's any one of four elements,
and so forth (see figure 2.10). So within k probes we will have covered
2k - 1 elements. Since we eventually have to cover all n elements, k is
about lg n. Therefore, roughly speaking, the average will be near

1 x 1 +2 x 2+3 x 4+4 x 8+5 x 16 +.+lgn2 1 lgn
= _ Z i2i- 1

n n

We will see later (page 120) that this is roughly

n(lgn - 1) _lgn-1
n

So when X is in L and X is equally likely to be anywhere in L, then on
average BINARYSEARCH does about lg n comparisons-about the same as
its worst cost. This isn't so surprising when we realize that about half the
elements (2ln-1 ) take about Ig n probes!

wtn I i wi hn 2
within 1 within 2

within 3 within 4

Figure 2.10 Elements covered by binary search when n = 11

Now let's find the average exactly. With our two assumptions, on probing
L[[(n + 1)/2]] (one comparison) the probability that X is in the lower half
of L is ([n/2] - 1)/n; the probability that X is in the upper half is Ln/21 /n;
and the probability that X is equal to the middle element is 1/n. Thus,
BINARY-SEARCH 's average cost satisfies the recurrence

0 n =0

f(n) = 1 n = 1
Sn/21 - fern/2e - 1)+ 10+ en/23 f(Ln/2])+ I n > 11 n n n

See table 2.7.
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n 1 2 3 4 5 6 7 8

f(n) 1 3/2 5/3 2 11/5 7/3 17/7 21/8

- 1/1 3/2 5/3 8/4 11/5 14/6 17/7 21/8

Table 2.7 Average cost of successful binary search

Pue Why does this recurrence have two boundary values?

This recurrence looks armed to the teeth, but there's something special
about it-both fs on the right are multiplied by their argument. Unfortu-
nately the f on the left isn't. However we can make all of them the same
type if we multiply everything by n.

Pause Can you guess the function from the first eight values given in table 2.7?

Multiplying by n yields the recurrence

0 n=O
nf(n) = 1 n.=1

I ([n/21 - 1)f([n/2] - 1) + Ln/2jf(Ln/2]) + n n > 1

Ps Why didn't the boundary values change?

Since all the fs are now of the same type we can replace each of them
by another function; perhaps we'll get lucky and see a pattern when things
clear up a bit.

Replacing nf(n) by a new function g(n) yields the recurrence

0 n=O

g(n) = 1 n=1

I g([n/2] - 1) + g(jn/2J) + n n >1

See table 2.8.

n 1 2 3 4 5 6 7 8

g(n) 1 3 5 8 11 14 17 21

Table 2.8 Cost of the transformed function

This recurrence looks a lot more docile, but it still has those threatening
floors and ceilings. If only we could change them all into floors (or ceil-
ings) perhaps there would be some pattern to exploit. Aha! Recall that
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Fn/21 - 1 = L(n - 1)/2J. Also, this term must also occur in the expansion
for g(n -1)! So what happens if we turn everything into floors and subtract
two consecutive terms?

Subtracting g(n - 1) from g(n) yields

g(n) - g(n - 1) = g([n/21 - 1) + g([n/2J)

- g([(n - 1)/21 - 1) - g([(n - 1)/2J) + 1

= g(L(n - 1)/2]) + g(Ln/2j)

- g(Ln/2J - 1) - g([(n - 1)/2J) + 1

= g([n/2J) - g([n/2j - 1) + 1

Replacing g(n) - g(n - 1) by a new function h(n) yields

hn = I n = 1
h([n/2J) + 1 n > 1

See table 2.9.

n 1 2 3 4 5 6 7 8

h(n) 1 2 2 3 3 3 3 4

"Table 2.9 Cost of the next transformed function

Pause Why does this recurrence only need one boundary value?

Eureka! This recurrence is the same as that for the worst cost of
BINARYSEARCH. Thus, we just plug in the known result

h(n) = rlg(n + 1)]

Now we retrace our steps to get

g(n) = g(n - 1) + h(n) = g(n - 1) + [lg(n + 1)]

From which it follows that

n n+1

g(n) = Erlg(i + 1)1 = FI[lgi1
i=1 i=2
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Therefore

f(n) g(n) n+1f()=n =n 1:[g il
i=2

We've finally cornered the function in a sum, but what's the value of the
sum? Napkining we see that the sum can be no larger than n [lg(n + 1)1.
(Why?) And since f(n) = g(n)/n, this means that f(n) is no worse than
[lg(n + 1)1. But we knew that, that's just the worst cost. Let's take a look
at the first few terms of the sum

=1 =2 =3n+l _ _ _ _ _ _ _ _ _ _ _ _ _ _

rlg i = [ig 21 + Fig 31 + Fig 41 +'[ig 5] + [ig 61 + [ig 71 F[g 81" +...
i=2

= lxl+2x2+3x4+4x8+-..

+ [lg(n + 1)] x 2 Flg(n+M)1-1 - Flg(n + 1)1 x ??

= i 2 i-1 - [lg(n + 1)] x??

We know that the terms can't continue past [lg(n+1)1. However, unless
n + 1 is a power of two, the sum will add too many terms. So we have to
subtract some of them. And each of these terms will have the same value
as [lg(n + 1)].

P How many terms do we have to subtract?

First, let's figure out the value of the sum of i2'-1. (Look at the exer-
cises on sums in chapter one to see why the following useful trick works.)

k k-i

E i2S-1 E(i + 1)2i
i=1 i=0

k-1 k-1

i=0 i=0

k-i
2 2: i2g-' +2 k-_1

i=0

k
2 i 2 i-1 - k 2 k + 2 k k I

i=l
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Now if we subtract the sum from both sides we'll have an expression for
the sum! Therefore,

k

i2'-1 = k2k - 2 + 1 = (k - 1)2k + 1
i=1

This trick works by renaming the terms of the sum, rearranging them,
then subtracting rearranged parts. It will work for any bijective function
(the bijective function does the renaming). Thus, if f is bijective then
Zri = E rf(j).

Now we have to figure out exactly how many terms to count to find
the value of the original sum, g(n). It's easy to show that the sum counts

2 Flg(n+1)1 - n - 1 extra terms; thus

[lg(n+l)]

g(n) = i2'- - [lg(n + 1)1 (2 rIg(n+1)1 - n - 1)
i=1

- ([lg(n + 1)] - 1)2 Fg(n+1)1 + 1 - [lg(n + 1)]( 2F-lg(n+l) - n - 1)

- (n + 1)[lg(n + 1)1 - 2[lg(n+-1)] + 1

Hence

f(n) = g(n) = [lg(n + 1) - 2 [lg(n+1)1 - [lg(n + 1)] - 1
n n

Victory!
Finally, since n = 21g n it follows that

2 r1g(n+1)] - [lg(n + 1)1 - 1 r 2r _ [lg(n + 1)] + 1
= 2 where 1 > r > 0

n n

So the average cost when X E L is disappointingly close to the worst cost;
it's at most two comparisons less on average. Still, we've learned how to
tame a pretty wild recurrence. To complete the analysis we have to find
the average cost for X 0 L. It turns out that that average cost is also close
to the worst cost.

The Lower Bound on the Average Cost

The previous analysis was a difficult cross-country walk; we saw the goal
and simply hacked our way straight to it. As is often the case, this arduous
pathfinding forced us to develop new tools to make our way easier; we
now know how to solve a complicated recurrence and we know the values
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of two difficult sums. Now in developing a lower bound we're going to
climb a tree to see the problem as a whole. After developing the lower
bound proving BINARY-SEARCH optimal on average we'll see a much easier
path to our previous goal. Our new vantage point will be decision trees.

Recall that we can model every search algorithm in the comparison-
based model by a decision tree. Every such decision tree must have at
least n nodes, and, since we have assumed that X is in L, every node is a
possible outcome of the search algorithm. The cost of an outcome is the
same as the level of the corresponding node plus one. (Why?) The sum
of the levels of the nodes of a rooted binary tree is called its path length.
So the average number of comparisons, if X must be in L and X is equally
likely to be anywhere in L, is the same as the path length divided by n
plus one. So we want to find the minimum possible path length of any
rooted n-node binary tree.

Consider building an n-node tree from scratch so that its path length is
as small as possible. After the root and the first level one node we have
two places to put the next node. If we make it a child of the root it will
add one to the path length, if we make it a child of the level one node it
will add two to the path length. So let's make it a child of the root. The
next node we add must be a level two node, but the following child can
be level two or level three, so let's make it a level two node. Continuing
in this way we see that the path length of this tree is

n/ n

-- lgiJ = -- (Flg(i + 1)1 - 1)
i=1 i=1

n

= -flg(i + 1)] - n
i=1

= (n + 1)Flg(n + 1)] - 2 flg(n+l)] + 1 - n

This is a greedy strategy; we're trying to minimize path length by taking
the best (in this case, smallest) bites we can at each step. Being as greedy
as possible means assuming that locally optimal decisions make for globally
optimal structures-in other words, living for the moment. In this case we
toss caution to the winds and allow all nodes in each generation to have as
many children as possible. Like real life. To see that this is best possible in
this case, call a node in a binary tree fertile if it has two offspring. Now if
any binary tree has a non-fertile node and if that node, or any other node
in the same generation, has a grandchild then there is another tree with
the same number of nodes with a smaller path length (see figure 2.11).

P e Why is this true?
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non-fertile node

grandchild

Figure 2.11 Reducing path length of binary trees with non-fertile nodes

So if an n-node binary tree has the smallest possible path length among
all n-node binary trees then all its non-fertile nodes can be at most one
level higher than the height of the tree.

Therefore the minimum average height of an n-node binary tree is

[lg(n + 1)1 - 2[ig(n+I1) - [lg(n + 1)1 - 1 -1
n

Therefore a lower bound on the average cost of any successful search in
the comparison-based model is

[lg(n + 1)] - 2Fg(n+) - [lg(n + 1)] - 1
n

Exactly the same as the average cost of a successful BINARY-SEARCH! A sim-
ilar analysis applies to unsuccessful searches. So BINARY SEARCH is optimal,
even on average.

Programming

Considering how slowly lg n grows and the size of most inputs there is
little point trying to fine tune binary search. However, if it is to be used
as a frequently called subroutine then there are some tricky speedups. For
example, we can rewrite it to only test equality at the end of the search.
(Still, if you feel the urge to optimize, lie down for a while, it will pass. )
Although short, binary search is difficult to code correctly and, as we saw
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with LINEAR-SEARCH, the best thing to do is to develop the algorithm from
general principles (argue inductively about the search) and only then think
about tweaking the resulting program to exploit any special circumstances.

2.4 Changing the Model

What is laid down, ordered, factual, is never
enough to embrace the whole truth: life always

spills over the rim of every cup.

Boris Pasternak

Well, it seems that we've completely solved the searching problem: BIN-
ARYSEARCH is optimal in both the worst and average case. Unfortunately
there are at least four important cases where we either can't or shouldn't
use binary search:

"* The data is either not sorted or not sortable.

"* The data is sorted but it is structured in such a way that it does not
cost the same to probe data in different parts of the structure.

" The data is sorted and probe costs are uniform but we know some-
thing about the possible values and we can exploit that information
for faster performance.

" The data is static so we know all possible search requests in advance.

Let's look at one simple instance of each case in the next four subsections.

Randomized Linear Search

Suppose L is unsorted and X is known to be in L; LINEAR SEARCH'S worst
cost is then n - 1, not n. If we have two processors to do the search
then we can reduce the worst cost to [n/2] by dividing L into two parts
and searching each in parallel. Unfortunately many machines have only
one processor. Surprisingly, it is possible to get a similar effect on average
with only one processor.

Suppose we have two versions of LINEAR-SEARCH: one searches from the
left end of L and moves right, and the other searches from the right end
of L and moves left (see figure 2.12). Both separately have the same
average and worst cost as LINEAR-SEARCH. Now construct another algorithm
that flips a coin and depending on the outcome decides to call one of
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the two versions of LINEAR SEARCH to do the search. (See algorithm 2.6. )
What are the worst and average costs of this coin flip algorithm? In some
sense they must be the same as those of the two subalgorithms, but can
we guarantee them?

flip a coin

H .. ......T ,

Figure 2.12 Coin flip linear search

Let's try to pick an input that will make the algorithm work as hard as
possible. If we put X near either of the ends of L then there is a one
in two chance that COINTLIPSEARCH will find it quickly. On average, the

COINFLIP-SEARCH (List, lower, upper, X)
{ Look for X in List[lower..upper].
Report its position if found, else report 0.
upper > lower > 0. }

flip a coin
if heads

then
index +- lower
while upper > index and List[index] 0 X

index <-- index + 1
if index > upper

then return 0
else return index

else
index <- upper
while index > lower and List[index] : X

index <-- index - 1
if lower > index

then return 0
else return index

Algorithm 2.6
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worst place we could put X is right in the middle of L. Then, no matter
which version of the algorithm is chosen, the worst cost will be n/2. But
this is weird; the definition of worst cost we have been using assumes that
there is a fixed worst cost. Here we seem to have a variable worst cost
whose 'average" is n/2. What's going on? /

Algorithms that make decisions using random numbers are called ran-
domized algorithms; randomized algorithms force us to rethink what we
mean by average cost and worst cost. Given an algorithm A, the set In

of all inputs to A each of size n, and a cost function fA, the worst and
average cost of A are defined as follows:

worst cost(A) = maxfA(I)
IEln

average cost(A) = e(I)f(I)
IGIn

where P(I) is the probability that I occurs.
These definitions don't work if A flips a coin because they assume that

the only variation is over the input space, In. The coin flip algorithm shows
that it is possible to have variation over the algorithm space as well. We
can think of a randomized algorithm as a set of algorithms, one of which
is picked at some point and, for each algorithm, the input can vary over
the entire input space. (See figure 2.13. ) For example, we can think of
the coin flip algorithm as really being two algorithms, only one of which
gets picked at run time.

f

SI

FriAt s A

A

Figure 2.13 The algorithm space and the input space
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Suppose a randomized algorithm, A, flips a coin three times (or flips
three coins), figure 2.14 shows the eight predictable algorithms belonging
to A's algorithm class. Having "unrolled" A in this way we can extend our
previous definitions of worst and average cost because the leaf algorithms
are predictable. Since each is predictable, the worst cost of each of the
eight leaf algorithms is well-defined. So A's worst cost should be the worst
of the worst costs of each of the eight.

A

Ao A,

Aoo AOl A1 O All

A000 Awoi AooA010 A1 00 A,101 A, 10 ,A111

Figure 2.14 Algorithms produced by a three coin randomized algorithm

But now notice something important: the worst cost of each leaf algo-
rithm can occur for different inputs. Suppose one leaf algorithm's worst
cost occurs when the input is I,, and suppose the worst costs of the other
leaf algorithms occur for other inputs. If A is faced with I, then, assuming
that A uses unbiased coins, there is a seven in eight chance that it will
avoid that worst cost!6

What does this mean to our analysis? Suppose we fix the input to be I,
what is A's performance on I? It is no longer fixed. We now have an
expected performance since no one can predict which version of A will
actually be picked. This is the same idea as the average cost, so to dis-
tinguish between them let's use "expected" when it is for many algorithms
and a fixed input, and "average" when it is for many inputs and a fixed
algorithm. (Beware: Most books do not make this distinction; usually
"expected" means the same as "average.")

6 We don't even have to make all inputs equally likely, we can force any probability distribu-
tion we want.
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So when the algorithm can be any one of a set of algorithms As and we
cannot predict which algorithm is picked, then for a fixed input I, As's
expected cost on I is

expected cost(As, I) = > P(A)fM(I)
AEAs

where P(A) is the probability of choosing the algorithm A from the set of
algorithms As.

And we should replace our definitions of worst and average cost by
worst expected cost and average expected cost

worst expected cost(As) = max E, P(A)fA(I)I

average expected cost(As) => P(I){ PP(A)fA (I)}

This definition of the worst expected cost is reasonable since it is the cost
we can guarantee, independent of the outcomes of the coin flips.

Long Pause Is it possible for the worst expected cost to be lower than the average cost?

For COIN-FLIPSEARCH, As is of size two and the probability of pick-
ing each version is 1/2. As we determined when analyzing LINEAR SEARCH
(page 92), the only variation in the input that matters is X's position in L,
so here In is of size n. A little computation shows that the worst place we
can put X (assuming that X is in L) is right in the middle of L. Thus,
the worst expected cost, if X is always in I, is n/2. The "worst cost" is
still n - 1, but it's now meaningless, since we can no longer predict when
it will occur.

Pue What happens if X 0 L?

Finally, if we can predict which algorithm gets picked (as happens, for
example, when there is only one algorithm to choose from) then we may
use the old definitions of the average and worst costs since the only vari-
ation is over the input space. But there really is no need because the old
definitions are just a special case of the new ones.

C>zxý< ý<
Randomizing has three important practical consequences. First, random-
izing makes the average cost easier to predict. This is important because,
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as we saw after analyzing LINEAR SEARCH, even if we calculate an "aver-
age" there is no guarantee that it will corresponds to anything in reality.
To calculate the average of a predictable algorithm we have to guess the
probabilities of each possible input. These guesses may well be wrong.
Paradoxically, randomizing makes guessing unnecessary.

Second, by scrambling the algorithm's behavior we can guarantee that
the algorithm's cost will be near its calculated average independent of its
input! We've all had the frustrating experience of searching for a pair of
matching socks and finding one only after looking at half the socks. To
guarantee average search times we should always start the search by tossing
all the socks into the air! Randomizing decouples the algorithm's behavior
from its input. If previously a particular input caused really bad behavior
now it can cause only average behavior.

RANDOMIZING

On the other hand, a predictable algorithm does well in a benign uni-
verse (for example, LINEAR SEARCH does well if X is always near the left
end of L ) but a randomized algorithm does not exploit that advantage.
We could make it adapt to its input, but the better it adapts, the more it
exposes itself to worst cases; an algorithmic catch-22. As Lewis Carroll
pointed out: jam yesterday and jam tomorrow, but never jam today.

This apparent disadvantage of randomized algorithms becomes an
advantage when we are working on problems that have only one instance
(all the problems in chapter six have only one instance). When given a
problem with only one instance (for example, is n prime?) a predictable
algorithm does the same thing over and over again. But a randomized
algorithm may respond differently every time it is called, even though
the input is always the same. This can be used to great advantage; we'll
consider this again in chapter six.



2.4 Changing the Model 129

A worst case optimal predictable algorithm is like a koala. Koalas sub-
sist almost entirely on eucalyptus trees and their physiology is specialized
to take advantage of the peculiarities of these trees. However this extreme
adaptation makes it easy for us to get rid of all koalas (just get rid of all
eucalyptus trees!). A randomized algorithm is more of an all-rounder-
like omnivorous humans; it doesn't necessarily exploit all that there is to
exploit, but on average it doesn't do too badly, no matter what its envi-
ronment. So, if you suspect that the universe is out to get you, randomize
your behavior!

Searching Linked Lists

Now assume L is sorted, but the sorted order is kept indirectly. L is a
list of n elements, with a helper array, next, of size n. There is a special
index, head, which points to the smallest element in L; thus L [head] is the
smallest element in L. In figure 2.15 head = 2, so the smallest element
is L[2]. Unlike previous lists, there is no necessary relation between L[i]
and L[i + 1]; for each i, the next largest element after L[i] is L[next[i]].
The successor of the largest element is an index that cannot point to any
element (any such value will do, let's call it nil) signifying the end of
the list. In figure 2.15 next[3] = nil, so the largest element is L[3]. Such a
structure is called a singly linked list. The array next is an array of pointers
giving the sorted order of the list L.

head

L : IL[1] L[2] L[3] [4

next: 3 4 nil 1

Figure 2.15 A singly linked list and its implementation

Linked lists are useful when we want to maintain a list in more than one
order. For example, L could be a list of patients at a hospital ordered by
name (the list order) with a secondary ordering by age (the linked list
order). Given such a list we want to search for X in L. (Suppose, for
example, that the chief resident doesn't want to find a patient by name,
she wants to find a sixty-five year old patient. )
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To find the ith largest element in a singly linked list we must follow i
pointers (see figure 2.15). So the access time is proportional to the ele-
ment's position. If a list access costs about as much as a comparison then
we can't use binary search because it implicitly assumes that all probes cost
the same. If comparisons are the only operations that matter then binary
search is still a hot idea. But otherwise we have to change the model.

We can't avoid n comparisons and accesses in the worst case since X
could be the largest element, but if the list is kept compactly in an array
in positions 1 to n we can randomize to achieve a worst expected cost
of O(VHn). We will need uniform(l, n)-a procedure that returns an integer
randomly chosen with uniform probability from the range I to n (each
integer in the range is equally likely to be chosen).

The idea is to guess k locations for X. Of those k, find the largest one
less than X. Then search the linked list for X from that element to the end
of the list. See algorithm 2.7. This is like JUMP SEARCH except that during
the first phase of the search we're shooting in the dark; the k random
elements are not necessarily in increasing order.

LINKED-LIST-SEARCH (List, n, head, next, guesses, X)
{ Look for X in the n element singly linked implicit list List.
Report its position if found, else report 0.
List is sorted in increasing order through next,
List[head] is the smallest element of List, and
the largest element of List has a next value of nil.
n > 1 and guesses is the number of samples of List examined. }

largest -- head
for i from 1 to guesses

j +- uniform( 1, n )
if X > List[j] and List[j] > List[largest]

largest ,- j

index ,- largest
while next[index] $ nil and X > List[index]

index - next[index]
if List[index] = X

then return index
else return 0

Algorithm 2.7
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For this algorithm, the worst thing to search for is an X greater than or
equal to the largest element. So let's assume that X is the largest element;
this will give us the algorithm's worst expected cost. Now, what's the
best k? Assume that all nk sequences of k random elements are equally
likely to be chosen. Since each guess must be smaller than X, it's possible
to show that the probability of finding X after at least i further comparisons
is (n - i)k/nk. Therefore, the average number of comparisons involving
X is

I+l+ (n -i)k 1 n k

k + E nk -k=+l+ n (n
i=O i=O

Sk+l+1 ik
i-=0

Now, by induction on k it is possible to show that for large n

n nk+1 nk

Eik- k + 1 - + O(knk2)
i=1

Therefore, for large n the average number of comparisons is

1 ( nk+l nk k1)
=k+l+;ý-• ý- -- 2+O(kn-)

k+1 2

Differentiating with respect to k we see that the minimum occurs when

k ,-• v/n-- 1

Thus the best k is about v•. The worst expected cost is then 2v'-n +
o(v\/-) comparisons involving X. And this can be shown to be asymptot-
ically optimal for the worst expected cost.

Interpolation Search

Given a sorted list L and an unknown element X, we know that to find X
in L we cannot reduce the worst number of three-way comparisons below
[lg nJ + 1. But perhaps we can reduce the average cost if we know the
probability distribution of the universe of which L is a sample. Intuitively,
we should be able to better guess X's probable location in L.
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For example, if for romantic reasons we're searching a thick phone book
for Montague Capulet, it's reasonable to look near the beginning of the
phone book. If the first letter of a name occurs with uniform probability
then Montague Capulet should appear about one ninth of the way in. Sim-
ilarly, if there are many Capulets, then Montague Capulet should be near
the middle of the list of Capulets.

Suppose that L is a sorted list of numbers. If L uniformly partitions the
set of numbers then X should be near L[[pn]] where

X - L[1]
L[n] - L[1]

is the average proportion of elements less than X. So L[[pnl] is the ele-
ment most likely to be near X. (For this to work we must already know
that L[n] > X > L[1].) Then we do the same thing for the appropriate
sublist, and so on. This is interpolation search.

This algorithm is simple, but its analysis appears to be difficult. It is
possible to show that it is 0 (Ig lg n) on average, but instead of analyzing it
let's look at a more complicated algorithm, called quadratic binary search,
that is also O(lg lg n) on average but that is easier to analyze.

Quadratic binary search first probes L[[pn]l. If X < L[[pn1] then it
sequentially probes the elements

L[[pn -iv1']] , i=1,2,3,...

until it finds the smallest i for which X > L[[pn - iv/-n1]. Similarly, if

X > L[[pnl] then it sequentially probes the elements

L[[pn+iv1]] , i=1,2,3,...

until it finds the smallest i for which X < L[[pn + iV@]/W].
Why do this? Well, when the jump search ends we know X's position

to within roughly V.%/ elements. If the average number of comparisons that
this process takes is constant (it's about two), then in a constant number
of comparisons we've reduced the search space to the square root of the
previous size. Now we do the same thing on the sublist, and so on. We
can take the square root of n no more than Ig lg n times before reaching
a constant since n = 2 1gn = 2 2"g" and taking the square root of a number
halves the exponent. So, since each iteration takes a constant number of
comparisons on average and there are Ig Ig n iterations on average, then,
on average, quadratic binary search takes 0 (lg Ig n) comparisons.
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Now, let's get technical and show that it only takes about two comparisons
on average to reduce the sublist by a square root. The average number of
comparisons before we bracket X on the first iteration is

Zi P(we use exactly i probes to determine the sublist)
i=1

And this (see figure 2.16) equals

P (we use at least i probes to determine the sublist)
i=1

Also, we know the probability is one when i = 1 and i = 2 since we always
use at least the first two comparisons to bracket X. Thus the average value
is v n

2 + E P(we use at least i probes to determine the sublist)
i=3

-1 =2 =3

>1
>2

>3

Figure 2.16 F, iP(f(x) = i) = •. P(f(x) > i)

Now, suppose i _> 3. If we need i or more probes then the probability
that X's actual location is more than (i - 2)v/i- locations away-in either
direction-from our guessed location of pn is

P(pn + (i - 2)v/-' > location of X > pn - (i - 2)v'H)

Now it is possible to show, by using a relation called Cebygev's
("shay-bee-shev") inequality (which we will develop in the next chapter,
page 171), that
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p(1 -p)n
P(pn+(i-2)vHn >_ location of X > pn-(i-2)V ) -)n

(i - 2)2n

1< 4(i - 2)2

since p(1 - p) < 1/4.

Pause Why is it true that p(1 - p) < 1/4?

Thus the average number of comparisons is less than

- 1 01 12 + 14(i -2)2 < 2 + E1i2

i=3 =1

- 2+--T46

= 2.4112...

(The bound on the sum of the squares of the reciprocals of the first n
numbers is related to the harmonic numbers (see next chapter). )

So, quadratic binary search takes no more than about 2.5 ig ig n com-
parisons on average. It is possible to show that ((lg ig n) is necessary on
average within a wide class of probability distributions.

Although interpolation search is exponentially better than binary search
on average, it isn't always a good idea. First, in the worst case it can take n
comparisons. Fortunately we can avoid this by interleaving a binary search
with an interpolation search; this interleaved algorithm has a worst cost
of 0 (lg n) and an average cost of 0 (lg lg n). Second, on many machines,
and for many applications, the arithmetic interpolation search needs to do
takes more time than is saved in comparisons. So, in practice, interpolation
search is not always much better than binary search.

Hashing

Finally, let's assume that we know all possible search requests, so we have
complete knowledge of the data. For example, if a programming language
has reserved words then they are fixed for all time when the language is
created, so given a reserved word we only have to tell which it is. Now we
could sort the words and use binary search whenever we need to identify
a particular word, but since we know all possible words we should be able
to reduce the search time considerably. However once again we have to
leave the comparison-based model to do so.
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Suppose there is some fast way to compute a number given any element
of the search domain. This is reasonable if the domain is itself a set of
numbers but it must also be possible for anything representable in a digital
computer, since we must code it somehow to get it into the machine in
the first place. So it's okay to assume that every element is now just a
number. Assume further that each number is unique. It's stretching reality
a little to assume that unique numbers can be computed quickly, but if all
the elements are different then the numbers, theoretically at least, can be
distinct.

Now in most imperative languages it is possible to access any array loca-
tion in constant time.7 Since all elements are now unique numbers we can
use their values as array indices. Since every number is distinct, every ele-
ment ends up in a unique array location. Finally, since computing these
associated numbers is fast (by assumption), then to search for something
we merely compute its associated number to produce an array index. This
is a good solution if the array is about the same size as the search domain.
Unfortunately the numbers can be very large, so the array can be imprac-
tically large. What to do?

If the numbers are wide apart then we can squish them into a smaller
range to fit within a practical array size. This squishing operation is called
hashing. In effect we first fingerprint all possible elements, then to search
for any particular X we fingerprint the suspect, X, and quickly compare
its fingerprint to those on file. If there is no match then X is not in the
list; if there is a match then there may be many matches. 8 We now need
to decide which, if any, of those matches is really X.

If the fingerprints of two different numbers are the same then we have a
collision. (Imagine how annoyed the FBI would be if most of us had the
same fingerprints. ) We want a fingerprinting function

"* that is easy to compute,

"* whose values are easy to compare,

"* that produces numbers of roughly the same size as the size of the
search space, and

"* that minimizes the number of collisions.

Such a function is called a hash function.

7Technically, access times aren't constant for large arrays, but they are within an order of
magnitude of each other so we can assume them to be constant.
8 1t is commonly believed that human fingerprints are unique; but even if they are, when

fingerprints are taken they still get smudged and two different fingerprints can look alike after

smudging.
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There are two things to note. First, if we know the probability distribu-
tion of the elements of the domain then it is possible to show that searches
take constant time on average. Of course, we have to spend preprocess-
ing time building the hash array in the first place, but this is reasonable if
we have a static set of input elements and a large number of queries to
answer.

Second, in the most extreme case of foreknowledge we know all possi-
ble searches beforehand, as, for example, in the reserved words example.
In that case we can build a hash array using perfect hashing so that every
search takes constant time in the worst case! Building a perfect hash array
is expensive, but this is the ultimate search algorithm if we want the fastest
possible worst cost; we cannot improve on constant time. Because of its
large set-up cost, perfect hashing is sensible only when the search domain
does not change over many queries.

2.5 Coda-Apples and Oranges

I don't know what I may seem to the
world; but as to myself, I seem to have

been only as a boy, playing on the
seashore, and diverting myself, in now

and then finding a smoother pebble
or a prettier shell than ordinary, whilst

the great ocean of truth lay all
undiscovered before me.

Isaac Newton, quoted in E. T. Bell,
Men of Mathematics

So which search algorithm is "best?" During this chapter we have pre-
tended that the number of comparisons done is proportional to the time
taken. We have also agreed to say that one algorithm is "worse" than
another if it takes more time to run. But there are other things to worry
about. We have seen that binary search is "better" than linear search in
both the worst and average case, but sometimes linear search is superior-
if n is small or if the search is done rarely. Also, linear search is easier to
code, so we get a working program faster and we have more faith that it's
working properly. Binary search is difficult to get right the first time.

Further, we can only use binary search on a subset of the problems
that linear search can solve. We cannot use binary search for any of
the following: unsorted lists; linked lists, even if the linked list is sorted;
hash arrays; multi-dimensional arrays, or any other non-linear structure;
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multi-dimensional searches (searching on several keys) when many pri-
mary keys are the same; or any database changing so rapidly that it is
too expensive to keep it sorted. Of course, in every case there are more
sophisticated things we can do to the data to keep the search time low.

Generalizing the search problem, we could ask that if X is not in L
then we at least get its nearest neighbors-that is, where would it be if
it were in L? More generally, the search can be over many dimensions;
this is the multi-dimensional search problem, and there are three versions
of the problem: exact match, partial match, and range query. Other ques-
tions that we need to consider before coding a search procedure are: How
static is L? Will searches be followed by insertions or deletions? Does L
have to be in some order for reasons other than ease of searching? Are
comparisons really expensive in this particular application? Is there any-
thing special about the elements of the search domain that we can exploit
to make the search faster? Is the search to be done in parallel with some
other process? Is the search to be oblivious-that is, must each comparison
be predetermined? (The advantage of an oblivious search is that it can be
easily parallelized. ) And so on, in infinite variety.

So which search algorithm is "best?" Well, the short answer is: best
compared to what? Certainly if the search needs to be done often and
there is a lot of data and the data is sortable and the data is not changing
rapidly and the number of comparisons is proportional to the overall work
then binary search is exponentially better than linear search. Other than
that you have to decide for yourself. You should now have some of the
tools to help you do so.

CX>SZ><ZXE><D

In this chapter we've seen the first practical uses of randomization in the
algorithms for searching linked lists and for hashing. Randomization is of
great practical importance and deep theoretical interest. It is connected to
probability theory, information theory (we'll meet this in chapter four),
lower bound theory, randomness (chapter six), and complexity theory
(chapter seven). We will see several randomized algorithms in future,
culminating in chapter six with a wonderful procedure to find primes fast.

This is the end of our first trek through the continent of analysis. We've
grappled with a small cluster of related search problems and found optimal,
or asymptotically optimal, solutions for them. Our next trek is through sim-
ilar country. We will stay within the province of comparison-based prob-
lems but change emphasis from searching for something to searching for
something with a particular property. That property is rank within some
ordering.
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Endnotes

Computational Ideas
Comparison-based model, linear search, jump search, binary search,
interpolation search, quadratic binary search, hashing, perfect hashing,
search keys, sentinels, reduction strategy, simplicity strategy, balance strat-
egy, input-output lower bound, static versus dynamic data, average cost,
trees, path length, decision trees, linked lists, pointers, predictable algo-
rithms, randomized algorithms, interleaved algorithms, expected cost,
worst expected cost, average expected cost.

Mathematical Ideas
"* Solving recurrences by guessing a general solution involving several

unknown constants then solving for the unknown constants using the
recurrence.

" Finding the minimum of a differentiable function by differentiating
and setting the derivative to zero, finding the turning point, then
checking that it is a minimum by differentiating again and checking
that the second derivative is positive.
Note that a function may have a minimum when the derivative is
undefined. Also, even if the derivative is zero, if the second deriva-
tive is also zero the turning point may be a maximum, minimum, or
neither.

" Removing floors and ceilings in simple minimizations by examining
the real-valued form of the function.

" Exploiting the fact that an algorithm's cost is usually non-decreasing
to bound recurrences involving division by a constant.

" Using structural induction on recursively defined structures to prove
properties of the structures.

" Simplifying recurrences involving floors and ceilings by turning all
floors into ceilings (or conversely) and subtracting one value of the
function from another to cancel common terms.

"* Finding the values of sums by rearranging the terms of the sum with
a suitable bijective function and subtracting similar terms.

Definitions
* sample space: The sample space of an experiment is the set of all

outcomes of the experiment.

"* event: An event is any subset of the sample space of an experiment.
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" probability: The probability of an event among a finite set of events
is the ratio of the number of ways the event can happen divided by
the total number of ways any of the events can happen.

" disjoint events: Two events are disjoint if they do not share any out-
comes.

" independent events: Two events are independent if the probability of
one is not affected by whether the other happens.

" boundary condition: A boundary condition of a recurrence is any
value of the function defined by the recurrence.

"* floor. The floor of a number is the largest integer less than or equal
to the number.

"* ceiling: The ceiling of a number is the smallest integer greater than
or equal to the number.

"* predictable algorithm. A predictable algorithm always behaves the
same if given the same input.

"* randomized algorithm: A randomized algorithm modifies its behavior
by flipping coins.

"* rooted tree., A rooted tree is a tree with a special node, the root.

"* binary tree: A binary tree is a rooted tree in which each node has at
most two children.

"* ordered tree: An ordered tree is a rooted tree in which we distinguish
between the children of a node.

"* decision tree: A decision tree models all possible sequences of com-
parisons of an algorithm.

"* leaf, A leaf of a tree is a childless node.

"* fertile node: A fertile node of a rooted tree is a node with the maxi-
mum possible number of children.

"* level: The level of a node in a rooted tree is the number of nodes on
the path from the root to the node; the root has level zero.

"* height: The height of a rooted tree is the level of the deepest leaf.

"* path length: The path length of a rooted tree is the sum of the levels
of all nodes.

"* worst cost(A) = maxfA(I)
IEln
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"* average cost(A) = P e(I)fA(I)
Ilnl

"* worst cost lower bound(A) = min maxfA(I)
AEAm f EI

"* average cost lower bound(P) = mfin {ZP( mI)f(}

"* expected cost(As, I) = • P(A)fA(I)
AAEAs

"* worst expected cost(As) = max { P(A)fA(I)}
1In AEA 

s

IEln b 8

Constants
* rr = 3.14159 26535 89793 23846...

Notation
* P = the probability of

f {} = set delimiters

* [x] = the floor of x

* x1 = the ceiling of x

* (x) = the nearest integer to x

Tools 1 n=l
" f(n)= n >1 f(n)=n

"* The sum rule: If A and B are disjoint then P(A or B) = P(A) +P(B)

" [xJ = n n + 1 > x > n

"* Fx = n n n> x> n - 1

LxJ x < [xJ + 1/2
"• (x)= ? x= LxJ+1/2

[x] x > [xJ + 1/2

"* min f(x) > min[f(x)J, min[f(x)] = Fmin f(x)]
x X X X
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* min ++x =2vr-
l<x<n X

[n j=f (v/'h) if n-=k 2 or k(k±+1)
[ v---- (v'n-n - 1 otherwise

"* min x = e In n
x

(1 n=1
1 ~ ) f([n/2j)+l n > 1 €= ~ ) ln~

"* [n/2] + 1 > [n/21 > Ln/2]

"* [(n + 1)/2j = [n/21

"* Fn/21 + [n/2] = n

"* [[n/lJ/mJ = [n/lmJ

2 2 rlgn] > n 2 2 lgn > 2 [lgnj

* [n/2iJ=1 €=I > i= LlgnJ

* [lg(n + 1)1= LlgnJ + 1

* The number of nodes of a height m rooted binary tree is at
most 2 m+1 - 1

"* The height of an n-node rooted binary tree nodes is at least Lig nJ

"* The path length of an n-node rooted binary tree nodes is at least
(n + 1)[lg(n + 1)1 - 2 [lg(n+1)j + 1 - n = (n + 1)[lgnJ - 2 ( 2 LignJ - 1)

"* The average path length of an n-node rooted binary tree nodes is at

least Llg nJ - 2 (2 LIgnj - 1)- Llg nJ
n

"* If f is bijective then E =r rf ()

n

* Z i2- 1 = (n - 1)2n + 1

n

S-[lg i = n[Ign - 2 rlgn] + 1
i=1
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0 n=0
f (n) = 1 n= 1

[n/2] - 1 f(Fn/2] - 1) + [n/2J f([n/2]) + I n > 1
n n

f f(n) = [lg(n + 1)1 - 2Flg(n+l)l - flg(n + 1)] - 1
n

0 n=0
f f(n) = 1 n=1

f(Fn/2] - 1) + f(Ln/21) + n n >

'== f(n) = (n + 1)[lg(n + 1)1 - 2 flg(n+l)1 + 1

0 (n= 0 n=0, 1
Sf(n)= minf(i)+f(n-i)}+n n >1

.=. f(n) = n(Flgn] + 1) - 2frgnj (problem 15, page 152)

nik-= nk+l nk knk-1

* ik= - - + 1- + O(k 2nk 2 ) (problem 16, page 152)
i=1

i IP(f(x)=i) = P(f(x)>i0

Notes
Pierre de Fermat independently solved Pascal's original probability prob-
lem. Gerolamo Cardano preempted both mathematicians, but his work,
done almost a century before, was ignored. Cardano, a lively figure in
sixteenth century science, not only studied gambling he also gambled his
fortune and his reputation away.

Randomized linked list search is adapted from "Analysis of a Random-
ized Data Structure for Representing Sets," Jon Louis Bentley, Donald F.
Stanat, and J. Michael Steele, Proceedings of the 1 9 th Annual Allerton Con-
ference on Circuit and System Theory, 364-372, 1981. The lower bound
was established in "Probabilistic Searching in Sorted Linked Lists," Tom
Leighton and Margaret Lepley, Proceedings of the 2 0 th Annual Allerton
Conference on Circuit and System Theory, 500-506, 1982. The analysis
of quadratic binary search is adapted from "Understanding the Complexity
of Interpolation Search," Yehoshua Perl and Edward M. Reingold, Informa-
tion Processing Letters, 6, 6, 219-222, 1977.

Exercise 1, page 144, is adapted from an illustration in Programming
Pearls, Jon Louis Bentley, Addison-Wesley, 1986. Exercise 20, page 147, is
adapted from Combinatorial Search, Martin Aigner, Wiley-Teubner, 1988.



Endnotes 143

Problem 24, page 154, is from "A General Class of Resource Tradeoffs,"

Jon Louis Bentley and Donna J. Brown, Proceedings of the 21t Annual
Symposium on the Foundations of Computer Science, IEEE Computer Soci-

ety, 217-228, 1980. It is generalized and completely solved in "Guessing
Games and Distributed Computations in Synchronous Networks," J. van
Leeuwen, N. Santoro, J. Urrutia, and S. Zaks, Carlton University techni-
cal report SCS-TR-96, June 1986. Problem 25, page 154, is adapted from
"An Almost Optimal Algorithm for Unbounded Search," Jon Louis Bentley
and Andrew C. -C. Yao, Information Processing Letters, 5, 82-87, 1976. For
background on research problem 3, page 156, see "Ulam's Searching Game
with Lies," Jurek Czyzowicz, Daniele Mundici, and Andrzej Pelc, Journal
of Combinatorial Theory, Series A, 52, 62-76, 1989.

Further Reading
For a good book on the beginnings of probability, with some insight into
Renaissance scholarship, see the stylish Cardano: The Gambling Scholar,
Oystein Ore, Dover, 1953. Cardano wrote his book on games of chance
in 1526.

For ways to speed up binary search see Programming Pearls, Jon Louis
Bentley, Addison-Wesley, 1986. Be warned that even professional pro-
grammers get it wrong the first time; binary search is difficult to code cor-
rectly, especially if the programmer is trying to optimize its performance.
Knuth in section 6.2.1 of The Art of Computer Programming: Volume 3
points out that while binary search was first published in 1946, the first
bug-free version only appeared sixteen years later. The following paper
illustrates some of the difficulties of coding binary search: "Some Lessons
Drawn from the History of the Binary Search Algorithm," R. Lesuisse, The
Computer Journal, 26, 2, 154-163, 1983.

The study of finite sets of things belongs in discrete mathematics. As
we've seen, a lot of analysis depends on discrete mathematics. For fur-
ther background see the excellent Concrete Mathematics: A Foundation for
Computer Science, Ronald L. Graham, Donald E. Knuth, and Oren Patash-
nik, Addison-Wesley, 1989.

For more on searching problems see Combinatorial Search, Martin
Aigner, Wiley-Teubner, 1988. See also Search Problems, Rudolf Ahlswede
and Ingo Wegener, Wiley, 1987, and for more practical problems see
Searching Algorithms, Jihi Wiedermann, Teubner, 1987. For an analysis of
one hash scheme see Design and Analysis of Coalesced Hashing, Jeffrey
Scott Vitter and Wen-Chin Chen, Oxford University Press, 1987. As usual
see also Knuth's The Art of Computer Programming. Volume 3, Sorting
and Searching Addison-Wesley, 1973.

Algorithmics: Theory and Practice, Gilles Brassard and Paul Bratley,
Prentice-Hall, 1988, devotes a whole chapter to randomized algorithms.
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For a comprehensive presentation of probability theory see An Introduc-
tion to Probability Theory and Its Applications, Volume 1, William Feller,
Wiley, third edition, 1968. Although comprehensive, Feller is hard going
for the novice, try also Basic Probability Theory, Robert Ash, Wiley, 1970.

Questions

One must learn by doing the thing; for
though you think you know it, you have

no certainty until you try.

Sophocles, The Women of Trachis

[Exercises

1. We are to find a single bad card in a deck of about a thousand
punched cards. Unfortunately, we can only find the bad card by
running some subset of the cards through a program and seeing an
erroneous answer. How many runs of the program does it take to
find the bad card?

2. One day on the popular television game-show "The Artifice is Slight"
Ms Minnie Mouse was given the chance to win a new car. Minnie
would win the car if she could guess its price in one minute. She
could ask only one kind of question, the format of which was that
she would state a number and the obliging game-show host would tell
her "lower" or "higher." Unfortunately, Minnie, a victim of overexcite-
ment, guessed wildly and went home on foot. (This is a true story,
only the names have been changed to protect the silly.)

(a) What should Minnie have done?

(b) What should Minnie have done if she had to guess the volume
of the sun to the nearest liter?

3. What is wrong with the following argument?
"BINARY-SEARCH shows that we can find an element in an ordered list
in O(lg n) time, but these n elements must have been input at some
point, so by the input-output lower bound BINARY-SEARCH must take
Q (n) time."
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4. Suppose L is sorted. Find LINEARSEARCH'S average cost if

(a) X E L (assume that X is equally likely to be any element of L).
(b) X ý L (assume that X is equally likely to be between any two

consecutive elements of L).

5. There are many ways of reducing a problem to a collection of pre-
viously solved problems. Suppose we split the search problem for
unsorted lists into two search problems, as in algorithm 2.8. Develop
and solve a recurrence for the worst number of element-element com-
parisons.

LINEAR SEARCH (List, lower, upper, X)
{ Look for X in List[lower.upper].
Report its position if found, else report 0.
lower > 0. }

if lower > upper
then

return 0
else

mid <- [(lower + upper)/2]
if List[mid] = X

then
return mid

else
left -- LINEAR-SEARCH (List, lower, mid - 1, X)
right <-- LINEAR SEARCH (LiSt, mid -P 1, upper, X)
return max (left, right)

Algorithm 2.8

6. Rewrite algorithm 2.1, page 84, to recurse until there are no elements
in the list left to search.

(a) Does the precondition of the algorithm change?
(b) Give a recurrence describing this algorithm's worst cost.

7. Consider finding LINEAR SEARCH's average cost using an argument like
that used for BINARY-SEARCH's average cost. If p is the probability that
X equals any of the n elements of L then LINEAR SEARCH's average
cost is

S1n n=lf~n= +(-p~~n 1)n> 1
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(a) Solve this recurrence.

(b) What is wrong with this argument?

8. What happens if we replace the precondition

upper - lower + 1 >jump > 1

in algorithm 2.3, page 100, by the precondition jump > 1?

9. Show that p(1 - p) < 1/4.

10. Determine whether

(a) [x+nl = [x]+n.

(b) [x + nj = [xj + n.

(c) Fx - nl = Fx] - n.

(d) [x-nj=-[xJ-n.

11. Show that

(a) Ln/2J + [n/21 = n.

(b) Ln/3J + L(n + 1)/3j + [(n + 2)/3J = n.

12. Show that

(a) L[n/mJ/lJ = [Ln/lJ/mJ = [n/lmj.

(b) [n1flJ =[3].2

13. (a) Show that [n/2'j = 1 4=#- i Llgn].

(b) If Fn/2t1 = 1 what is i?

14. Show that

(a) [lg[xjj [lgxj.

(b) f(n)= f(=n/2J) 1 n>1 = f(n)= LlgnJ +1.

15. Show that

(a) v'n + 1 -n- 1
v/-n + 1 + v/-'

(b) F2v-n-]-1_> [=1 :-Ž [ 2v V-2.
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16. Solve the following two questions in either order.

(a) Show that
i. [(n + 1)/kl = [n/kJ + 1.

ii. [lg(n+1)1 = LlgnJ+1.
i ii. [,fn -+ 11 = L%/-n-J + 1.

(b) Develop conditions on f such that Ff(n + 1)1 = [f(n)J + 1.

17. Suppose we can only afford c comparisons while searching a list.
What is the maximum n that we can search using c comparisons in
JUMP SEARCH?

18. Here is a simple scale for weighing objects.

Given a collection of objects of known weight we weigh an object
by putting it in one pan and putting known weights in the other pan
until the scale balances. It may happen that there is no way to do
this if we may only place the given weights in only one pan.

(a) If we can place the weights in both pans what is the minimum
number of weights necessary to weigh an object whose weight
is an (unknown) integer n?

(b) Use decision trees to find a good lower bound.

19. We have n apparently identical gold coins. One of them is an amal-
gam and is lighter, but is otherwise indistinguishable from the others.
We also have a balance with two pans as in the previous question, but
without weights. So any measurement will tell us only if the loaded
pans weigh the same or, if not, which one weighs more.

(a) How many measurements are necessary and sufficient to find the
false gold coin?

(b) What happens if we don't know if the false coin is lighter or
heavier?

20. We wish to test n people for syphilitic antigen. To this purpose we
draw blood from each of them and label the samples. The Wasser-
man test tells whether blood contains syphilitic antigen. We may mix
portions of the blood samples to conduct tests on several individuals
simultaneously.
How many tests are required to determine who has syphilis, if any-
one?
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Problems]

1. Using the following definitions

expected worst cost(As) = P(A) {maxfA(I)}
AEAs IEI

5

expected average cost(As) = E P(A){ E PMMlfa(I)}
AeA 8  IEIn

(a) Show that the expected average cost is the same as the average
expected cost.

(b) Is the expected worst cost the same as the worst expected cost?

(c) Relate the following in order of size: worst cost, average
cost, expected cost, expected worst cost, worst expected cost,
expected average cost, and average expected cost.

(d) Why are '"average worst cost" and "worst average cost" unimpor-
tant?

2. Consider the following randomized algorithm to search an unordered
list of size n: generate a random number uniformly from the range
1 to n and start a linear search at that position, wrapping around the
list until we return to the starting location.

(a) What is the worst cost of this algorithm?

(b) What is the probability of the worst cost occurring?

(c) What is the worst expected cost and average expected cost of
this algorithm?

(d) Is this algorithm equivalent to first scrambling the list then search-
ing it from left to right?

(e) We can think of LINEAR-SEARCH as making an assumption about
where X will be in the list. LINEAR-SEARCH '"assumes" that X will
be near the left end of the list. What assumption is the random-
ized algorithm making?

(f) We can think of this randomized algorithm as selecting one
of n versions of LINEARSEARCH at random. The coin flip algo-
rithm presented in the text only selects one of two versions of
LINEAR-SEARCH at random.

i. Show that the two algorithms have the same worst expected
cost.

ii. What is the advantage of using the more complicated algo-
rithm?
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iii. Suppose that it is practical to generate n! versions of UN-

EAR SEARCH each using a different probe sequence. Consider
a randomized algorithm that generates a random number in
the range 1 to n!, then calls one of these algorithms. In
what sense is this randomized algorithm best possible?

3. (a) Prove the following relations

i. minf(LxJ) > minf(x) > Lminf(x)j > min~f(x)]
x X X X

ii. minf(LxJ) > Lminf([Lxj) _> min f([x)]J _> min[f(x)]
x X X X

iii. [minf([xJ)j > [minf(x)]
x x

iv. LminLf(x)J- =minnLf(x)J
x x

v. LminLf(Lxi)JJ =minLf(LxJ)J

x 
x

(b) Establish the relative order between the following

minf(x) minf([xl) min[f(x)1 [min f(x)1
x x x x

min[f([xl)1 [minf([xl)] [min[f(x)]1 [min[f([x])11
x x x x

4. Show that Lv/n + Lv'/-Jj= (v/).

5. For this question you need to know that the minimum of a two-
variable function f(x, y) can be found by partial differentiation.

(a) Show that

min { xi+n /i xi} =(k+1)nk+l
ý i=1i=1

where the minimum is taken over all sets of k positive real num-
bers x, to Xk and fI/=1 x1 is shorthand for x, x X2 x ... x Xk.

(b) Show that
k-1

min E xi/xi+l = (k + 1)xk
i=1

where the minimum is taken over all sequences of k positive real
numbers x, to Xk where xi > xj+1 and Xk = 1.

6. Suppose we have a list L, of n elements, drawn without replacement
from a set S of m distinct things (m > n). We may compare any
two elements of S but this comparison tells us only whether the two
elements are equal.
Suppose that X is equal to an element of S and suppose that L is
drawn from S (so X may or may not be equal to an element of L).
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(a) What is the worst number of comparisons needed to decide
whether X is in L?

(b) What is the average number of comparisons needed to decide
whether X is in L? Assume that X is equally likely to be any
element of S, and that L is equally likely to be any subset of S
of size n.

(c) Give good lower bounds for both cases.
(d) Find the worst and average costs when S may have duplicated

elements. Assume that S is partitioned into k sets of duplicates
of multiplicities ml, M 2 , .-. . , Mk.

(e) Are the results different if S has no duplicates and L is drawn
with replacement?

7. (a) What is the average time of JUMP-SEARCH if X is in L and X is
equally likely to be any of the n elements in L?

(b) What is the average if X is not necessarily in L? (You must make
an assumption about the probability of X not being in L. )

8. (a) Show that if we probe the first, the (k + 1)th, the (2k + 1)th, and
so on, then JUMP-SEARCH'S worst cost is [n/kl + k - 1.

(b) What is the best choice of k?

9. Recurrences involving both square roots and floors and ceilings are
even harder than either separately. Consider

fn(n))0 n =0f~~n f = (n + 1 - [2v/-n-j) + 1 n > 0

(a) Assume that f is non-decreasing. By constructing a recurrence
with no ceiling function show that f(n) < [Vn1.

(b) By considering k = [2v/n- 1 or otherwise show that f(n) =

(c) Show that

g(n) 0 n = 0 (n)= vg(n +1-L2V/n- ) +1 n > 0 =g= n=[v9

10. Show that we cannot improve square root search in the worst case
by using k =(v/n+ 1 ) or k = [ /-n+ 1 j by showing that

(a) n v= )

(b) n ] -+I)Iifn+lis asquare
L[ /-n-_+1 j =('+ 1) otherwise
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11. Consider the following modification of JUMP-SEARCH: First choose two
integers, k and 1, as jump sizes. Interrogate every kth element to
bracket X to within k elements, then interrogate every lth element
of this sublist to bracket X to within 1 elements, then use linear search
on this sub-sublist. (This assumes two-way comparisons.)

(a) Show that the worst cost is Ln/kJ + Lk/lJ + 1.

(b) What are the best choices of k and I?

12. Show that

f n 0 n _< 2

fn) v (v• ) + n n >2 " f =O(nlglgn)

13. Here is a modification of square root search: once we have located
X to within roughly x/n elements we recursively use the square root
search algorithm on the sublist. We can model this algorithm by the
following recurrence on the real-valued function f

f(X) 2 x=2f~x) = (v/-x) + 1/x x > 2

(a) By considering the recurrence, or otherwise, determine the
order of the maximum depth of recursion of recursive square
root search.

(b) Give a close upper bound on the worst number of comparisons.
Your upper bound should be within o(v/n) of the actual upper
bound. (Hint: This can be done without any analysis just by
examining the recurrence.)

14. Consider the recurrence:

f(n) = f(g(n)) + r

We have seen three algorithms whose average costs fit this recur-
rence but which have three different growth rates. In linear search
g(n) = n-1, in binary search g(n) = n/2, and in interpolation search
g(n) = v/n. The respective growth rates of f are 0(n), 0(lg n), and
O(lg lg n).
(a) If we want to design a search algorithm that is O(lglglgn) on

average, what g should we look for?

(b) What g makes f = 0(lglglglgn)?
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15. We can use the average case lower bound on searching a sorted list
to solve a difficult recurrence. As we have seen, we can decompose
every rooted ordered binary tree into a root, a left subtree, and a right
subtree (see figure 2.9, page 115). Now, over the set of all rooted
binary trees with n leaves there is some smallest average height since
there are only a finite number of such trees. Let f(n) be the smallest
sum of the levels of the leaves of such a tree. Then

f 0 n_<l
f(n)= min {f(i)+f(n-i)}+n n >1

1<i<n-1

(a) Explain why this recurrence is correct.

(b) This is a tough recurrence to solve but we already know the
answer! Show that f(n) is the same as the smallest path length
of a rooted binary tree with n nodes. Hence,

f(n) =[lgn] + 1 - 2 [igni

n

16. Show by induction on k that for large n

nl nk~4l nk knkl1n ik- k+l 2 + 1 + O(k 2nk- 2 )

2 12

17. You are given two tokens of value r and s, respectively, and you
may double the value of either token. However every doubling must
result in a token of value at most t. Your mission, should you decide
to accept it, is to maximize the value of the sum of the tokens if you
may double n times.

18. Consider the following adaptive randomized list search. The algo-
rithm searches an unsorted list from left to right or from right to left
depending on the outcome of a coin toss. The coin is biased by the
outcome of previous searches. Initially the coin is unbiased.
If the last search was unsuccessful then the coin's bias is unchanged.
Now consider the number of comparisons of a successful search:

"* if it's less than n/2, then the coin is linearly biased so that the
next search has a higher probability of starting from the same
side of the list;

"* if it's n/2, then the coin's bias is unchanged;

"* if it's more than n/2, then the coin is linearly biased so that the
next search has a higher probability of starting from the opposite
side of the list.
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What is the average number of comparisons per search if we search
for all n elements of the list in sequence?

19. For which n is the average number of comparisons to successfully
find an element using algorithm 2.5, page 106, an integer?

20. (a) Assume that Vi < n, P(L[i + 1] > X > L[i]) = 1/(n + 1). Show
that the average time to find an element not in the list using
iterative BINARY SEARCH is given by the following recurrence:

S0 n= 0
f(n) = 1 n I

[n/2] n___n/J[n]f(Fn2 - 1) + Ln/2f([n/ J) + 1 n > I

(b) Show that

f(n) = [lg(n + 1)] + 1±- 2[Fg(n -1)
n+l

(c) Relate this result to the average time for a successful search.

21. The iterative binary search algorithm given uses three-way compar-
isons, but not all machines can do three-way comparisons in one
step. Algorithm 2.9 may do better on those machines.

BINARY-SEARCH (List, lower, upper, X)
{ Look for X in List[lower..upper].
Report its position if found, else report 0.
List is sorted in increasing order. upper > lower > 0. }

low <-- lower; high <-- upper
while high > low

mid +- [(low + high)/2j
if X > List[midj

then low +- mid + 1
else high ,- mid

if List[low] = X
then return low
else return 0

Algorithm 2.9
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(a) Choose an appropriate operation to count, give a recurrence for
the number of such operations as a function of n, and solve your
recurrence.

(b) Find the algorithm's average cost.

22. There are several worst case optimal algorithms to search a sorted list;
binary search is only one of the more convenient ones.

(a) Show that n < 2tLgnj+I - 1.

(b) Show that a comparison of X and L[i] where

2 LlgnJ > i > n - 2 Llgnj + 1

can always be the first comparison of a worst case optimal search
algorithm.

(c) As a function of n, how many different worst case optimal search
procedures are there?

23. Suppose we are given a sorted list L of n elements, and we know
that L contains k sets of duplicates of multiplicities mi, M2 , .. n. k,
where -i1 mi = n. We wish to search L.

(a) Show that if k = 1 then one comparison suffices.
(b) Show that if k = 2 then two comparisons suffice.
(c) Show that if an element in the m i class is less than' an element in

the mij class Vi, j where k > j > i then lg(k + 1)1 comparisons
are necessary and sufficient.

(d) If k > 3 is there any advantage if we only know that there are
elements of multiplicity mIn, In2 , . . . , Ink but not their order?

24. You wish to determine the height, expressed in floors of a building,
from which a human being dies if tossed out of a window on that
floor. You have a building with n floors and you have a supply of k
students. You are only allowed one operation to determine the lethal
height: you may toss a student out of a window. If the student lives
then he or she may be reused in another toss, but if the student dies
then he or she cannot be reused.
Develop an algorithm to find the lethal height using the minimum
number of tosses.

25. So far all our search algorithms search for elements in a bounded set.

(a) Show that you can find an integer in an infinite range in

[lg(n + 1)] + 2[lg[lg(n + 1)1]

comparisons where n is the (unknown) size of the integer.



Questions 155

(b) Prove a lower bound of E>l lg() n, where Ig(i) n = IgIg... Ig n
(i times).

26. Transform randomized linked list search to a probabilistic guessing
game on the integers and prove its optimality when searching for the
largest element.

27. Prove the optimality of interpolation search within a model assuming
a uniform distribution of the elements.

28. Exercise 2, page 144, assumes that Minnie can remember the two
endpoints of the current reduced range as the search progresses.
Effectively this means that Minnie must be able to remember 2 Ig n
bits. Find a worst case optimal search algorithm that will work with-
out calculating endpoints. Your algorithm may derive information
from the value of the last probed point.

29. You are a robot facing an infinitely long wall and your task is to find
a door in the wall. You are only allowed to walk along the wall to
your left or to your right and at any time you may turn and walk
in the opposite direction. Assume that the door is an (unknown)
integer number of steps away.

As a function of the (possibly unknown) distance to the door, what

is the minimum number of steps you have to walk to find the door if

(a) you know that the door is to your left.

(b) you don't know where the door is but you know that it is n
steps away.

(c) you don't know where the door is but you know that it is within
n steps away.

(d) you neither know where the door is nor how far away it is.

30. You wish to find a record that you know is somewhere on one of m
tapes. You could find the record by running through each tape but
the tapes are very long and the record may be near the beginning of
some tape. Assume that the desired record is the n'th record of one
of the tapes. But you don't know n.
Solve this problem by generalizing the solution to the previous prob-
lem to a robot searching for a door in m lanes.
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Research

1. How many tests are required on average in exercise 20, page 147?

2. Find a worst expected case optimal algorithm to find the pth largest
of a set of n things sorted in increasing order and implemented as a
singly linked list in an array.

3. In some search problems we are not guaranteed a correct answer to
all of our queries.

(a) Suppose we know that we can be told up to k lies. What is the
worst number of queries necessary to identify an element in a
sorted list of size n ?

(b) What if we know that we will be told exactly k lies? (This
has been solved exactly for k < 2, but only asymptotically for
large k. )

4. How would we have to modify this chapter if our machines could
compare three elements simultaneously and decide their relative
order? We can now search a sorted list of n things in log 3 nl time
(how?) and there is an easy lower bound of Flog 6 nl (why?).
Which of these bounds can be improved? (This is not hard.)
What is the best time for searching a sorted list if we have a com-
parator that can find the largest of three things simultaneously?

5. In this chapter we concentrated on searching for one thing in a list
of n things. But what we really want to do is minimize the cost of
searching for m things in a sorted or unsorted list of n things.
For unsorted lists it is possible to show that

(a) 2n comparisons are necessary and sufficient when m = 2.

(b) 2n comparisons are necessary and 2n + 3 comparisons are suffi-
cient when m = 3.

(c) 2n comparisons are necessary and 3n + 3 comparisons are suffi-
cient when m = 4.

What are the exact results for (b) and (c) ? What is the general case?
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10

15 16 17tt l 18 ]

6. Across. Down:
1 Hops are in every way to look. (4,6) 1 Enlist in following the little woman. (4)
6 Nearly ready, without the article tinter 2Oegadoeds hrl osdr h

sounds ominous. (4) remains. (3)
10 Kind expert exhibits pointer. (5 3 Gave the sack to the English then joined
i1 Vegetable covering parchment. (9) ~ angles (obtuse). (5)
12 Southern way to kill takes hair short for the 4 A throne on earth, no heart. One more--a

asian city. (8) hornet, maddened. (7)
13 Fifty meet a common ending, love the 5 We hear illegal clubbing overhead. (7)

language loosely. (5 7 Canadian territory is unruly, losing endless
15 To subdivide give it as mercy. (7) wood you know. (5)
17 The romantic tale sounds like a joke. (5) S Minor dazes in a tizzy truly disorders. (9)
19 Wild hare gal solves your problems! (7) 9 Lays in as convoluted reasoning. (8)
21 Severe recipe begins with "Saut&. Stir." (7 14 Fairground dweller, but two for every
22 Seventy beheaded, and why not?, it's an integer. (6,4)

occasion! (5 16 Bet it's strange to exist inside a bird. (5)
24 As anticipated, they spat. Love's lost, get rid 18 Set piece is a basic part. (7)

of the rat! (8) 20 Rave, rage--lose our head. Mean! (7)
27 .. And the home game holds nothing big at 2 hr ag fe onanrya h

the ending. (5) bgnig. 5
30 'Defensive language, lady". (3) begopinunting. (5) un oas.3

23 Complainountilsehsoundnhoarse. (331 Nlsonlos hisheadandsens of25 One cubic centimeter of air, polluted? About
proportion. (5) time! (5)

32 Corner a street without beginning or end. 26 Part of a tree done badly. (4)
(4) 28 Adam's madam is darkening daily. (3)

33 Unoriginal, but I drive a vet crazy. (10) 2 ril o l ainslaes 2

29Atce oRl ato'1eaes12



SELECTING

The important thing in Science is not so
much to obtain new facts as to discover

new ways of thinking about them.

William Lawrence Bragg, Beyond Reductionism

0 NE OF the advantages of computers is that they allow us to collect,
store, and retrieve enormous amounts of data. But data is not in

itself useful; data is not information until it has been organized to some
purpose. As you read this sentence, roughly one eighth of a billion light
detector cells in each of your retinas are firing, trying to tell your brain
something about the world. But each pixel by itself is meaningless; this
enormous amount of data is worthless until it has been summarized and
salient features have been selected and then communicated to the brain.
(In humans this takes about one-thirtieth of a second, which is why the
spokes of a car wheel appear to reverse at certain speeds. ) It's curious
that a sensory organ is useful only if it discards most of its sense data.
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In chapter two we tried our hands at simple versions of searching for
something; in this chapter we will examine simple versions of searching
for something with a particular property. In chapter four we will consider
ways to structure data to do both of these simple kinds of searches quickly.
The particular property we concentrate on now is ranking within some
ordering of the data. Given some data that can be put in order, we want
to find the ith largest thing. This is the selection problem.

Selection is essential to make sense of the world. To avoid drowning
in the never-ending information flood we're forced to summarize, simplify,
and select. 1 For example, the health of the economy is typically expressed
with a small set of numbers: cost of living index, gross national product,
per capita income, and so forth. Each of these numbers is an amalgam of
many separate indicators of economic well-being; each number is mislead-
ing in detail but each suggests general trends.

Similarly, given a file of numbers that is too large to keep, we want to
save some of the information-we want to summarize the data. A good
place to start is to find the largest, smallest, average, median, and mode.
The median is the smallest value bigger than half of the numbers. The
mode is the most frequent number. We could also find percentiles: n per-
cent of all the numbers are smaller than the n th percentile; so fifty percent
of all the numbers are smaller than the fiftieth percentile (the median).

The simplest way to find the ith largest is to sort the input then get
the ith. This is a good solution if we have to select many things or if n is
small (or both). But it isn't good if we only have to select a few things or
if n is large, for, as we learn in the next chapter, we cannot sort n things in
less than Q(n lg n) comparisons in the worst case (within the comparison-
based model of chapter two), and there is no reason to suppose that we
need this much work to select the ith. Intuitively, sorting is unlikely to be
an optimal solution for the selection problem because we get much more
information than we need. In fact, we will see that we can find the Pth

largest in linear work in the worst case.

3.1 Rankings
All our philosophy is a correction of the

common usage of words.

Georg Lichtenberg, Vermischte Schriften

We're going to be working with things that we can rank (or sort); what
sets can we rank? Well, first, if one element precedes another, then the

1"Where is the Life we have lost in living?/ Where is the wisdom we have lost in knowledge?/
Where is the knowledge we have lost in information?" T. S. Eliot, The Rock.
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second cannot also precede the first. Second, if of three elements the
first precedes the second and the second precedes the third, then the first
must precede the third. The first condition is asymmetry and the second is
transitivity. If every two elements of a set are related, these are the simplest
possible conditions guaranteeing that we can sort the set.

If we had asymmetry alone we would not always be able to put a set
in order. Here's why: suppose we have three things a, b, and c, that
obey the asymmetry condition, and suppose a > b. Where does c go?
Asymmetry allows four cases:

c>a, c>b c>a, c<b c<a, c>b c<a, c<b

Three of these cases lead to rankings, but one case cannot fit any ranking.
Transitivity ensures that that case cannot arise.

Ps Which case? What happens if there are four or more elements?

Strictly speaking, asymmetry and transitivity are not properties of ele-
ments, they're properties of relations between elements. A transitive asym-
metric relation is called a partial order. For example, the relation "richer
than" defined on the set of people is a partial order:

"* If Alice is richer than Bob, then Bob is not richer than Alice (so
"richer than" is asymmetric).

"* If Alice is richer than Bob, and Bob is richer than Carol, then Alice
is richer than Carol (so "richer than" is transitive).

Ps Is "sister of' a partial order? Is "cousin of' a partial order?

These orders are called "partial" to allow the possibility of two people
whose relation we don't know. For example, Alice may really be richer
than Bob but we can't know that unless we know how rich both are or
unless we know that Alice is richer than someone who in turn is richer
than Bob. It is even possible for two people to be unrelatable in our cho-
sen relation. For example, if Alice and Bob are equally rich then neither is
richer than the other. Again, consider the relation "ancestor of." This rela-
tion is a partial order, but there exist at least two people neither of whom
is an ancestor of the other. Note that these relations are defined on the
same set of things (the set of all people); we can define many different
relations on the same set. In general, a relation on a set is just a set of
ordered pairs of elements of the set. In normal speaking, we say that the
first element of one such pair is related to the second element.

If every pair of elements in the set S is relatable by the partial order
relation R, then R is a linear order, and we say that S is orderable; meaning
that it is possible to rank the elements of S. For example, the middle partial
order in figure 3.1 is a linear order.
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Superman Wonder Woman Superman Tintin Bugs Bunny

Speeding Train Pogo Snoopy

Batman Spiderman

Road Runner Asterix

Dagwood Wil E. Coyote Zippy

Stronger Than Faster Than Cleverer Than

Figure 3.1 Three partial orders

Ps Is "funnier than" a linear order?

Let's call a partially ordered set a poset ("po-zet"), for short. For all
future applications of posets let's assume that S is orderable by "less than,"
and that all elements of S are unique. Although S is orderable, we do not
necessarily know the order of any two elements of S. However, since S is
orderable, we know that every two elements are rankable. As we compare
elements of S we gain information about the ordering of S.

We can draw posets using nodes to represent elements, and edges
between the nodes to represent relationships, as in figure 3.1. We draw
an edge connecting two nodes if we know their order, using relative
height to indicate their order. The higher element is bigger. For clarity,
we discard edges that we can deduce by transitivity (see figure 3.2).
Sometimes it's awkward to draw posets using only downward pointing
edges, but in that case we can add an arrow to make the direction of
dominance explicit.

Long Pause Can we ever be forced to add an arrow to a poset drawing?

One poset is a subposet of another if all its relations are contained in
the other. For example, in figure 3.2 all posets with three elements are
subposets of the last (rightmost) poset with three elements. Thus, the
poset consisting of n unrelated elements, called singletons, is a subposet
of every poset with n elements.

Pause Why does this follow from the definition of subposets?
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02 0 2 00° N VO 0d

Figure 3.2 All posets with up to four elements

In this chapter and the next all problems are on an orderable set of n
unique elements. We will continue to work within the comparison-based
model. The problems will be of the general form: find the least number
of three-way element-element comparisons necessary to build a particular
poset starting with n singletons. In the following sections we will develop
algorithms to find the largest element, the second largest, the largest and
smallest, the ith largest, and then several ranks simultaneously.

Although order relations have to be transitive, arbitrary relations do not
have to be. Here is an example from a part of mathematics called game
theory showing that the relation "more popular than" is not necessarily
transitive. 2 Marie Caritat, the Marquis de Condorcet, an eighteenth-century
French mathematician who killed himself during the French Revolution,
considered the following voter's paradox. Suppose Ronald, George, and
Geraldine are running for president. There are three voters, Alice, Bob,
and Carol. Alice prefers George to Geraldine, and Geraldine to Ronald.

2Game theory is about decision making in uncertain, risky, or competitive situations; it is
largely the invention of the Hungarian-born American mathematician John von Neumann
("noy-man"), perhaps the brightest mathematical mind of this century.
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Bob prefers Geraldine to Ronald, and Ronald to George. Carol prefers
Ronald to George, and George to Geraldine.

Suppose they vote for two of the three in a primary, then vote for
the third versus the winner of the primary. Let's say that the primary
is between Ronald and George. Since Bob and Carol prefer Ronald to
George then Ronald will win. Now Ronald goes up against Geraldine, and
Geraldine wins. Therefore Geraldine > Ronald > George, right?

But, if we take a vote between Geraldine and George, George wins!
Therefore Geraldine > Ronald > George > Geraldine!

Ps Suppose that Carol knows everyone's voting preference. Show that she
can vote so that her second choice (George) wins instead of her third
choice (Geraldine).

3.2 Finding the Best
Selection is the very keel on which

our mental ship is built.

William James, The Principles of Psychology

How fast can we find the best wrestler among n wrestlers? As we saw in
the voting example, transitivity and asymmetry do not always hold in real
competitions because of the complexity of human interactions, however
let's assume that the wrestlers are orderable by "better than." Also, let's
assume that initially we know nothing about the wrestlers' fighting ability.
Two wrestlers have to fight to determine their relative ability unless we can
deduce that information by transitivity.

We can find the best wrestler with the following algorithm: let any two
fight, then let the winner fight anyone who has not yet lost. Continue
until everyone has fought. This takes n - 1 fights (see FIND-MAX, algo-
rithm 3.1). Is this worst case optimal?

Proving optimality is a little difficult if we try to keep track of the even-
tual champion-because the champion could beat, say, Alice, without actu-
ally fighting her, by beating Bob, who has beaten, or will beat, Alice. Let's
turn the question around and consider the losers. Only the eventual cham-
pion did not lose, so there must be n - 1 losers. Since n - 1 people must
lose and each such loss is unique then there must be at least n - 1 fights.
Similarly, finding the worst wrestler also requires n - 1 fights (though it
seems cruel to do so!).

There are other ways to prove the same lower bound. To find the win-
ner we must build a poset having one overall winner and n - 1 losers start-
ing from a poset of n singletons. Let's say that a poset solves the problem
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FIND-MAX (List, lower, upper)
{ Find the index of the largest of List[lower.upper].
upper > lower > 0. }

max - lower
for index from lower + 1 to upper

if List[index] > List[max]
max -- index

return max

Algorithm 3.1

of finding the best, if when given the poset it is possible to determine the
best with no further fights. Now call any poset solving the problem of
finding the best a max poset. Figure 3.3 shows max posets for small n.
When n = 4, for example, we must build one of the last five posets in the
figure. Each of these posets solves the problem of finding the best of four
things. However only one poset (the first of the five) is a subposet of all
the others, so there is only one minimal poset with four nodes that delivers
the best with no further fights (see figure 3.4). Note that this does not
mean that the minimal poset is the cheapest to build, but only that no other
poset can be cheaper, since the minimal poset is contained in them all.

Figure 3.3 All max posets with up to four nodes

Ps Find a poset containing the minimal max poset of four nodes that is as
cheap to build.

0

Figure 3.4 All minimal max posets with up to four nodes

Now, to build a poset solving the problem of finding the best we must
connect it; that is, we must connect every wrestler by a chain of fights with
every other wrestler. Otherwise there will still be at least two candidate
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winners, and either one could be better than all the others. Now just as in
the lower bound argument for LINEAR-SEARCH in the last chapter (page 88),
connecting n wrestlers takes at least n - 1 fights. Therefore, finding the
best requires at least n-1 fights in the worst case. So FIND-MAX has optimal
worst cost within the comparison-based model.

The Average Cost

How many comparisons does FIND-MAX do on average? Well, FIND-MAX
does a comparison at every step so it does n - 1 comparisons on average.
Since only comparisons count in our current model we could stop here,
but by considering this seemingly innocuous problem we may find some
tools that will be useful for harder problems.3

The only variation in the algorithm is in the number of assignments,
so let's find the average number of assignments. While FIND-MAX always
does n - 1 comparisons the number of assignments it does depends on
the ordering of the elements of L. If L is in decreasing order it does one
assignment; if L is in increasing order it does n assignments.

Pause So is the average number of assignments (n + 1)/2?

Since the actual values in L don't matter to FIND MAX (only their relative
sizes influence the outcome of a comparison) then we may assume that L
is one of the n! arrangements of the numbers 1 to n; these are called the
permutations of n things. (Note that FIND-MAX cannot assume this about
its input, but we can assume it to simplify our analysis of FIND MAX.) Also,
lacking any information to the contrary, let's assume that all n! permuta-
tions are equally likely.

Now consider the ith iteration of the loop. FINDMAX does an assign-
ment only if L[i] is the biggest of the first i elements of L. Since, by
assumption, each permutation of L is equally likely, the probability of this
happening should be 1/i. On the other hand, if every permutation is
equally likely then the elements being compared on the ith iteration could
be any two elements, so the probability of one winning over the other
should be 1/2.

Pause Is the probability 1/2 or 1/i?

3"What is a weed? A plant whose virtues have not been discovered," Ralph Waldo Emerson,
Fortune of the Republic.
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It's tempting to think that if an event either happens or doesn't happen
then the probability of the event is one-half. To see that this is not so
consider the event of sneezing as you read this paragraph. This is an event
that either happens or doesn't happen; but chances are that you will finish
this paragraph without sneezing!

Now recall that the actual values in L don't matter to FIND MAX, what
matters is their relative sizes. As far as FIND-MAX cares, at the ith iteration
any of the first i elements of L could be the best seen so far. Also, we've
assumed that each permutation is equally likely, so the probability that L [i]
is bigger than all previous elements is 1/i. Thus, with the assumption that
each permutation is equally likely, the average number of assignments is

1+ n = + n X1 = - 1

1+ZP(L[i]>L[j] Vj<i) xl=1±Z~xl=> 7
i=2 i=2 i=1

The sum of the reciprocals of the first n integers is called the nth harmonic
number; it is symbolized by Hm.

How fast does H, grow? Well, i < 2F'gil, so 1/i > 1/2Flgi. Therefore,
if n - 2 k then

11 11 1 1 1 1
(1) (4 4) (11 11) 1

1 2 4 2k-1
- 1+2+4+±8 + 2-k

k
- 1+-

2

Similarly, we can bound H 2k from above using the inequality 1/i < 1/2Ll9 iJ.

1 11 1 1 1 1 I111 1 ( 111) 1

_ 1+ 2+ 2)+ (ý+ + ý+ ý)+ 8+..+

2 4 8 2 k-I 11+ 2 + ý + 8 +'"..+ •Tk-_ + 2•k

1

Combining the two bounds we see that

k + 1 > H 2k > k +
>k 1
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Finally, 2FIg n] > n > 2[ig n] and H, is an increasing function of n, there-
fore,

H2r1g _> H, > H2Llgnj

S•lgn]I+2 1--- >_ Hn -> Llg n--- +1

~Flnl 2 [gfl -n - 2

Hence

Hn = E)(lg n)

P s Why does this follow?

More exactly, Leonhard Euler ("oy-ler"), an amazing eighteenth-century
Swiss mathematician,4 showed that

Hn = Inn +'+ -y +o

where -y = 0.577... is called Euler's constant; -y is the Greek letter gamma.
See table 3.1.

n 1 2 3 4 5 6 7 8

H, 1 1.500 1.833 2.083 2.283 2.450 2.592 2.7171
lnn ±+ - 1.077 1.520 1.842 2.088 2.286 2.452 2.594 2.719

2n

Table 3.1 An approximation to the harmonic numbers

Thus, with the assumption that each permutation of L is equally likely,
FIND-MAX does an average of about In n assignments.

4Euler, perhaps the most prolific mathematician of all time, produced so much mathematics
that his complete works are still-after more than two centuries-not all published. He, like
Beethoven, lost a sense during the latter part of his life without reducing his output (Euler
his sight, Beethoven his hearing). Euler, in his depth and breadth, was a combination of
Beethoven and Mozart; he calculated like a fish swims.
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Statistics

Well, now we know the average number of assignments, but we don't
know the likely variation in the number of assignments from one run to the
next. Why is this important? Well, as mountain climbers, it isn't enough
for us to know that our rope has an average thickness of ten millimeters. It
is also comforting to know that its thickness doesn't vary between twenty
millimeters and one millimeter! The area of mathematics that analyzes,
summarizes, and interprets numerical data is called statistics.

One way to estimate the variation from one run to the next is to find
the variance in assignments: that is, the average of the square of the dif-
ferences of the numbers of assignments from the average. The variance of
a set of numbers tells us something about the spread of the distribution of
numbers. After raking a pile of leaves, the leaves' average position tells
us roughly where the pile is, and the leaves' variance tells us roughly how
spread out the pile is. The average and variance of a distribution summa-
rize it by giving information on its location and spread; they are statistics
of the distribution.

In figure 3.5 the flat distribution has a higher variance than the short
squat distribution, and the short squat distribution has a higher variance
than the tall thin one; the smaller the variance, the closer most numbers
are to the average value. The square root of the variance is called the
standard deviation. Since the standard deviation is the square root of the
variance it's in the same units as the average, and so can be added and
subtracted.

P(ri)

l ri

Figure 3.5 Three different distributions with the same average

A random variable is a function associated with an experiment that can
take on numerical values of some property of the experiment. A random
variable maps events onto real numbers; the probability that a random vari-
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able has the value r is the probability of the events that map to r. For
example, if we measure people's tummy widths, the probability that one
measurement will have a certain value is the probability of people's tum-
mies being that wide.

The average of a random variable X is denoted by p(X) (p is the
Greek letter mu, it stands for "mean") and its standard deviation is denoted
by o,(X) (a is the Greek letter sigma, it probably stands for "standard").
Given an experiment producing n events and a random variable X asso-
ciated with them that can take on one of n numbers ri, r 2, • . • r, with
probabilities P(X = r1 ), P(X = r2), ... P(X = rn), then

n

P(X)= riP(X = ri)
i~l

n

or2 (X) = Z(ri - ,(X)) 2p(X = ri)
i=1

We shall soon see that at least seventy-five percent of a distribution lies
within two standard deviations of the distribution's average using eebygev's
inequality, a result named after the nineteenth-century Russian mathemati-
cian PafnutiT ýebygev (pronounced "shay-bee-shev," and often written
"Chebyshev" or "Tchebycheff'). Besides being one of the founders of
modern probability theory, Cebygev was the first to improve our under-
standing of prime numbers beyond that of the Greeks, a subject we will
meet again in chapter six.

Let X be a random variable and let f be a non-negative real-valued
function then Markov's inequality states that

sP(f(X) >_ s) <_ PV(f(X))

Markov's inequality, named after the Russian mathematician Andrei Markov,
follows from the definition of p since

n

•u(f(X)) = -f(ri)P(X = ri)
i=1

= • f(ri)P(X = ri) + Z f(ri)P(X =ri)
i:f (ri)< s i:f (rj)>_s

E f(ri)P(X = ri)
i:f(ri)Žs

> s E P(X=r,)
i:f (r )>s

= sP(f(X) > s)
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If X has finite variance then Ciebygev's inequality follows when we take
f(X) as (X - 1 (X)) 2 /ao2 (X). From Markov's inequality we have that

tZ2P (X - #(X))2> 2X-, X)2

Or2 ->2 ) <_X) or(X-(X)2)--

_ (X -P (X))
2

a
2

(X)

02 (X)
a2(x)

= 1

In other words, 1
P( 1 i(X)+to(X)>_X>_4(X)-tu(X)) 2 1--

So, for example, taking t = 2 tells us that at least three-quarters of any dis-
tribution lies within two standard deviations of the distribution's average.

We've seen that FIND-MAX does H, assignments on average, and H, tends
to Inn as n gets large. It is possible to show that the variance of the
number of assignments is Hn - Hn2 ) where Hn2 ) - = 1/k 2 and H(2 )
tends to 7r2/6 as n gets large. 5 Thus the variance tends to lnn - 7r2 /6 as
n gets large. This variance is high relative to the average value so the
distribution of the number of assignments is not localized near its average.

Thus, with the assumption that each permutation of L is equally likely,
the average number of assignments FIND MAX does is roughly In n with
a standard deviation of about lnn. Using Cebygev's inequality we see
that in at least three runs out of four the number of assignments will be
between Inn - 2VIHnn and In n + 2V/lnn.

3.3 Finding the Second Best
Symbolism is useful because it makes things difficult.., in the beginning

everything is self-evident, and it is hard to see whether one
self-evident proposition follows from another or not.

Bertrand Russell, "Recent Work on the Principles of Mathematics,"
International Monthly, 4, 84, 1901

Now let's find the second best element of an orderable set. We wish to
build posets like those in figure 3.6. There is a simple 2n - 3 algorithm:

5Here's another surprising fact: as n grows, the probability that two randomly chosen positive
integers less than n don't have any common factors tends to 6/7r 2 = 0.607....
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find the best, discard it, then find the best of those remaining. Can we
do better? Well, again thinking in terms of wrestling tournaments, anyone
who lost to someone who was not the eventual champion cannot be the
second best wrestler. So the only possible candidates for the second best
wrestler are those wrestlers the eventual champion fought. But FIND MAX
(algorithm 3.1 [p. 165]) compares the eventual champion to as many as
n- 1 others. Since we need n- 2 fights to decide the best of these second-
raters, we cannot do better than 2n - 3. So 2n - 3 is optimal!

Figure 3.6 All minimal second-max posets with up to five nodes

Ps Do you see anything wrong with this argument?

This argument has much to recommend it; it is seductive and widespread,
but false. Here it is more starkly:

The necessity fallacy: Our algorithm does something, therefore
all algorithms solving the problem must do the same.

It's easy to fall into this state of sin because often we put a lot of
effort into careful design of an algorithm, so we think that we have solved
the problem in the best way possible. However, any such argument is
specious. A lower bound must apply to all algorithms within the model
that solve the problem, not just to particular kinds of algorithms.6

Okay, how much information about the second best can we gather while
finding the best? FIND MAX is a typical brute force and ignorance algorithm;
it does nothing clever. In the worst case the eventual champion will be L [1]
or L [2] and all n - 1 other elements will be candidates for the second best,
since they each lost to the eventual champion. However once again our
trusty divide and conquer strategy comes to our rescue, showing us a better
way. If we break the problem into two halves and use FIND-MAX on both
halves, then we can find the second best with only [3n/2] - 2 fights!

Ps Why is this true?

6However, when we're really stuck such lower bounds are better than nothing; we can restrict
the model to only allow algorithms of the type we've designed.
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After we find the overall winner there can only be at most [n/21 can-
didates for the second best. Why? Well, we've broken up the problem
into finding the best of all elements up to L[rn/2]] and all elements from
L[Fn/21 + 1] on. This takes Fn/21 - 1 + Ln/21 - 1 = n - 2 fights. Suppose
the two finalists are L[i] and L[j]. Now we find the winner by letting L[i]
fight L [j]. Suppose L [i] wins. Overall we've used n- 1 fights. But, to find
the second best we only need find the best of L [j] and all the elements
that lost to L[i], because no element that lost to L[j] can be the second
best! See algorithm 3.2.

FIND-SECOND-MAX (List, lower, upper)
{ Find the index of the second largest of List[lower-upper].
Break the list into two and find the largest of each half,
then find the largest of the candidates for second largest.
upper > lower > 0. }

mid +[(lower + upper)/2J
index, - FIND-MAX (List, lower, mid)
index2 ,- FIND-MAX(List, mid + 1, upper)
if List[index1 ] > List[index2 ]

then
List[indexi] -- List[index2 ]
return FIND-MAX(List, lower, mid)

else
List[index2] +- List[indexl]
return FIND MAX(List, mid + 1, upper)

Algorithm 3.2

Pause Is F3n/21 - 2 fights worst case optimal?

Intuitively, this algorithm probably isn't optimal because in the second
phase we recalculate a lot of information we already know. It would be
better if we could reduce the size of the set of candidates in the second
phase. But we can do this easily-just break the list into more pieces!
See figure 3.7. If we break the list into quarters, the worst cost drops
to [5n/41 -1. If we break the list into eighths, the worst cost drops further
to F9n/81.

Ps How far can this go?
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Figure 3.7 Dividing a list into one, two, and four pieces

FIND-MAX is bad because at each iteration the current person fighting the
current champion doesn't have a sporting chance. As FIND-MAX progresses
through the list, the probability that the next wrestler beats the current
champion decreases as 1/i. So the probability that the current champion
will be beaten rapidly approaches zero. It's as if you or I were to fight
the world wrestling champion-we would probably lose. Now what would
make the last fight as sporting as possible? In the absence of inside knowl-
edge of the wrestlers' real strengths, the fairest thing is to have every two
wrestlers beat an equal number of others before their fight. So the last two
wrestlers should have beaten (n - 2)/2 others each. Similarly, in the two
fights leading up to the last fight the four wrestlers involved should each
have beaten (n - 4)/4 wrestlers, and so on.

Pause How many such rounds will be fought?

Carrying the above insights to their logical extreme, we build binomial
trees. (See figure 3.8. ) A height m binomial tree is

"* a single node, if m = 0 or

"* two height m - 1 binomial trees connected at their roots, if m > 1.

Figure 3.8 The first five binomial trees

A height m binomial tree has 2m nodes, so an n-node binomial tree has
height ig n. These trees are called "binomial" because there are (lgn) level
I nodes and the values of the choose function, ('), are called binomial
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coefficients. To show that a binomial tree has (1gn) level 1 nodes we can
use the following binomial coefficient recurrence

(j') = C(i-1)I+ C'llj

To prove this recurrence recall that is the number of ways of choosing j
things from i things. Now pick any of the i things. There are (i71) ways

"(j-l) ways to include it in, the set of j things

chosen.
This recurrence was known to the Chinese in ancient times but it's called

Pascal's relation after the French mathematician Blaise Pascal, who popu-
larized it in Europe in the seventeenth century. The set of binomial coef-
ficients arranged in a triangle is called Pascal's triangle (see figure 3.9).
Pascal's triangle makes clear the recursive creation of the binomial coeffi-
cients: every coefficient is the sum of two parent coefficients as given by
Pascal's relation.

1

1 . .. 11,,, ,3,1

I\ 4, 34 1

15, ,, 1

1 6k' 5 2 & 5 6# 1

Figure 3.9 Pascal's triangle

By building binomial trees we can find the second best of n things using
at most n + Fig n] - 2 comparisons. To see this, assume that n is a power
of two. First, we find the best by building a size n binomial tree. Then
we find the second best by finding the best of the lg n candidates for the
second best (these are the level one nodes of the tree). See algorithm 3.4.

Pause Why are there lg n level one nodes?

One way to build the tree is to preserve dominance relationships by
swapping subtrees so that the root of the binomial tree made up of the
first 2i elements in the list is in position 2i, for i from 0 to lg n (see
figure 3.10). Thus, after forming the binomial tree, the best is in location
n and the lg n candidates for the second best are in locations n - 2i, for
i from 0 to lg n - 1. See algorithm 3.3; the operation "x +-+ y" swaps the
values of x and y, and the algorithm uses it to swap whole sublists.
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BUILD BINOMIAL-TREE (List, lower, upper)
{ Build a binomial tree on List[lower..upper].
upper - lower + 1 is a power of two. upper > lower > 0. }

if upper > lower
mid *- L(lower + upper)/2]
BUILD-BINOMIAL-TREE (List, lower, mid)
BUILD-BINOMIAL-TREE (List, mid + 1, upper)

if List[mid] > List[upper]
List[lower..mid] +-+ List[(mid + 1)..upper]

Algorithm 3.3

Ps How can we extend this algorithm when n is not a power of two? (Hint:
If n = 2 + j where j < 2i, how can we eliminate j candidates?)

L [8]

L[1] L[2] L [3][L [41[L [5]1L[6l1L[7]L[8] L -L[7]

L[2] L[31 L[5]

L [1]

Figure 3.10 Representing a binomial tree implicitly in an array

BUILD BINOMIALTREE is easy to analyze when n is a power of two. Let
n be a power of two and let f(n) be its worst number of comparisons,
then

f (n) ={0 n = 1
2f(n/2) + 1 n > 1

which gives
f (n) = 21gn - 1 = n-1
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Ps Solve the recurrence by considering the simpler recurrence
g(k) = 2g(k - 1) + 1. (This is the towers of Hanoi recurrence
from chapter one, page 19.)

We could also build the binomial tree explicitly using pointers, but that
takes O(n) more space (we need at least two pointers per element). A
structure whose interpretation depends on the sequence of elements but
not on explicit pointers is called an implicit structure. Although we have
stored the binomial tree in an array it is implicit in the arrangement of the
elements of the array. FIND-SECOND-MAX (algorithm 3.4) is good if we
are short on space. However, saving space usually costs extra time (in
this case, we use extra swaps, but in our current model only comparisons
matter). This is a very common compromise-it's called the space-time
tradeoff. more space for less time, more time for less space.

FIND-SECONDMAX (List, lower, upper)
{ Find the index of the second largest of List[lower..upper].
First rearrange List to form a binomial tree
then find the largest of the candidates.
upper - lower + 1 is a power of two. upper > lower > 0. }

BUILDBINOMIAL-TREE (List, lower, upper)

2-max +-- upper - 1
for i from 1 to lg(upper - lower + 1) - 1

if List[upper - 2 i] > List[2-max]
2_max +- upper - 2'

return 2_max

Algorithm 3.4

Ps Show that FINDSECONDMAX does up to (n lg n)/2 swaps. (Hint: What's
the appropriate recurrence?)

The first phase of FIND-SECOND-MAX costs n - 1 comparisons. The sec-
ond phase costs Ig n - 1 comparisons. So we use at most n + ig n - 2
comparisons to find the second best of n things when n a power of two.
Is this optimal?
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Adversaries

To simplify the proofs of lower bounds for many problems we can cre-
ate an adversary. An adversary is a fiend who tries to make all algorithms
solving a problem work as hard as possible. This is hard to do if his nefar-
ious stratagems only exploit the foibles of one particular algorithm, since,
to give a lower bound on the problem, they must apply to all algorithms
within the model that solve the problem. To make sure that the adversary
is working within the model and not just exploiting a particular algorithm,
let's shift attention from the algorithm to the input.

Think of the adversary as sitting between us and our data, and imagine
that all possible size n inputs (all elements of In ) are written on separate
slips of paper. The adversary is armed with a paper shredder. When
we ask for a decision that depends on the input he snickers to himself
and works out which answer, among those still available to him, would
make our task hardest. Then he gives us that answer and shreds all inputs
inconsistent with it.

Note that he hasn't picked an input consistent with his answer, but he
can produce one at any time since all the remaining slips are consistent
with all his previous answers-they must be, they haven't been shredded.
Thus, he's continually discarding subsets of In that he thinks would give
us the least trouble; slowly winnowing out the wheat of inputs that make
us work hard from the chaff of inputs that are easy for us. We're trying to
pin him down to a definite input, and he's waffling as much as possible.
Eventually, despite his most malicious efforts, we reduce the remaining
slips of paper to just one, enabling us to halt.

Long Pause Can we use adversaries to prove lower bounds on the average cost of a
problem?

Every lower bound on the worst cost of predictable algorithms that
we've found so far is actually an adversary argument. For example, using
three-way comparisons in binary search the adversary has three possible
answers: X is equal to, less than, or greater than, the probed element.
The algorithm decides which elements are probed, but the adversary
decides what the outcome of each comparison will be. The adversary
wants to make the algorithm probe as many elements as possible. As we
have seen, one possible bad set of answers is to always respond that X
is bigger than every element probed. Once we, through the adversary,
have figured out what would be a bad outcome we can find an input that
produces that outcome.
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The strength of randomized algorithms is that letting the algorithm flip
coins makes the adversary's job very difficult. No non-randomized adver-
sarial strategy will always work against a randomized algorithm. Against a
randomized algorithm the adversary is forced to give up predictable worst
costs and look for worst expected costs.

Now, to turn the adversary into a proof of a lower bound we prove
bounds on how long the computation must take by arguing that the adver-
sary can force a particular amount of work no matter what an algorithm
does. Of course, depending on how clever the adversary is, this bound
may not be that good; to get a stronger bound we then have to define
a more painstaking adversary. Because any adversary's bound follows by
selecting subsets of the possible set of all inputs it is independent of any
particular algorithm. Hence it is a lower bound on the difficulty of the
problem.

To see how this works, consider the game of "Hangman." In this game,
your opponent chooses a secret word and you try to guess it by guessing
letters. If you guess a letter in the secret word, your opponent has to fill
in all places in the word that the letter occurs. If your guessed letter isn't
in the secret word, your opponent hangs one more part of a stick figure
representing you. You lose if she manages to hang all ten parts of the stick
figure. You win if you guess the word before she manages to fully hang
you. So you get up to ten mistaken guesses. Usually your opponent picks
a word and sticks to it. However she doesn't have to choose a word until
she's forced to.

Pause How can your opponent do this?

Here's how: Your opponent is armed with a huge dictionary. Suppose
she tells you that her secret word has six letters. But actually she hasn't
chosen a word at all. This seems to be cheating, but she's honest in her
own way; she won't ever tell you a lie. To make sure she never lies to
you, she now crosses out all words in her dictionary that don't have six
letters. If you first guess e (a sensible guess since it's the most common
letter in English), she checks her dictionary to see if there are still some
six letter words that don't have an e. If so, she tells you "no," and crosses
out all words with es. Next you guess t. (Another sensible guess; see
table 4.8, page 261, in chapter four. ) Again she scribbles in her dictionary
and says "no." Frustrated, you guess a and receive another "no."

Suppose at some point you choose i and when she consults her list of
remaining words, they all contain an i. If she's really painstaking she'll
find the position where i occurs most frequently in the remaining words,
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cross out all those that don't have an i there, then tell you "yes," and give
the position of the i. By this time you're three-quarters hung and things are
looking very bad. By the time you get fully hung, you may have guessed
only one of the six letters, and she still has a list of thirty possible words!
When you demand to know the secret word, she innocently announces
any one of them, just as though she had picked it before your first guess.
(Three hard six letter words are: cupful, fluffy, and plucky.) Because she
crosses out invalid words as she goes, you can never catch her out. Every
time you play her, you lose-and badly.

THINGS W2ER LOOKING BAD FGR BOB

Now that you know how she does it you can use your own dictionary
and prove that no matter what ten guesses you make, there are always
words that will not have had all their letters guessed. You have proved
a lower bound, using the adversary's tactics. No matter what the letter
guesser (the algorithm solving the problem) does, an arbitrary six letter
word cannot always be guessed in ten tries.

The Lower Bound

Now let's build an adversary to prove FIND-SECOND-MAX optimal. First, to
find the second best wrestler we must know who the best is. Why? Well,
finding the second best is equivalent to finding a wrestler who has beaten
all but one, and lost to that one. That one must be the best. So we cannot
avoid knowing who the best is if we find the second best.

Ps Suppose we have to find the third best, must we implicitly know who the
best is?

Consider any algorithm that finds the second best and suppose the best
wrestler fights k opponents. As we have already observed, when finding
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the best, at least n - 1 wrestlers must lose once. Now, every wrestler that
loses to the best is a candidate for the second best, and all but one must
lose again (to the second best). So of the n wrestlers, n- 1 of them must
lose at least once, and k - 1 of those n - 1 must lose at least twice. Thus,
there must be at least n + k - 2 fights. So, let's try to show that no matter
what tricks an algorithm tries, in the worst case the best wrestler must fight
at least [lg ni opponents.

Long Pause] Instead of maximizing the number of winner fights, how about maximizing
the number of candidate second best wrestlers?

The adversary wants to force any algorithm finding the best to stage
as many fights as possible against the eventual champion. So he wants
to make the number of wrestlers the winner of each fight has proved to
be better than grow as slowly as possible. Recall that, by transitivity, the
winner of a fight is not only better than the loser but is also better than
everyone the loser is better than.

Let a wrestler's strength be the number of fighters the wrestler has
proved to be at least as good as. Since every wrestler is at least as good
as themselves then at the beginning of the tournament every wrestler's
strength is one. At the end of the tournament there must be exactly one
wrestler whose strength is the number of wrestlers, n. Now suppose Alice
and Bob are about to fight, and suppose Alice's strength is a and Bob's
strength is b. Obviously it doesn't matter who wins: the winner will then
have strength a + b. (See figure 3.11. ) However it does matter in terms
of the growth rate of the winner's strength.

Ali ob Alice

Bob

a b

a+b

Figure 3.11 An intermediate fight while finding the best

Ps Who should the adversary let win?

The adversary wants to keep the growth in strength as small as possible.
His task is made difficult because every fight has two fighters. If he lets
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Alice win then Bob's strength stays the same but Alice's strength grows
from a to a + b. If he lets Bob win then Alice's strength stays the same
but Bob's strength grows from b to a + b. So the two relative growths in
strength he must choose from are (a + b)/a and (a + b)/b. And if a > b
then (a + b)/b > (a + b)/a. So the best he can do is to let the stronger
wrestler win! (If a = b he makes an arbitrary choice consistent with his
previous choices.) I

This argument seems to imply that the adversary is fixing the fights.
Actually, he is keeping a list of all size n inputs that the algorithm has
not yet forced him to disallow. Every time he makes a decision about
the outcome of a fight he must discard all remaining inputs inconsistent
with that decision. He discards subsets of the set of possible inputs (In),
depending on what the algorithm does, to find an input forcing the even-
tual champion to fight as much as possible. (Here In is the set of all n!
possible rankings of the n wrestlers. )

Now, if a > b then 2a > a + b. So if the adversary forces the stronger
wrestler of each match to always win then, from the algorithm's point
of view, the best that could happen is that the strength of the strongest
at most doubles. And it exactly doubles only when a = b. Against this
adversary no algorithm can more than double any wrestler's strength after
only one fight.

Since every wrestler's strength starts at one and at most doubles after
each fight, then after k fights the strongest wrestler's strength is at most 2k.
Since the eventual champion's strength must equal or exceed the number
of contestants, n, then there must be at least k fights where 2 k > n > 2 k-1.

Thus, no matter what an algorithm does, it must involve the eventual cham-
pion in at least Flg nl fights.

Therefore, finding the second best requires at least n + [lg ni - 2 com-
parisons in the worst case. So FIND-SECOND-MAX has optimal worst cost
within the comparison-based model.

3.4 Finding the Best and Worst
It was the best of times,

it was the worst of times.

Charles Dickens, A Tale of Two Cities

Now let's find the best and worst wrestlers; that is, we want to produce
minimal max-min posets like those in figure 3.12. We could use FIND-MAX
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twice to do this (invert the order of comparison to find the worst). This
takes 2n - 3 comparisons. Can we do better?

Figure 3.12 All minimal max-min posets with up to five nodes

Well, we just produced an optimal algorithm with divide and conquer,
so let's try it again. Let's find the best and worst of n wrestlers by breaking
the problem into two halves, recursively finding the best and worst of both
halves (divide), then marrying the two subsolutions into a solution for
the overall problem (conquer). See algorithm 3.5. (Divide and conquer
means halving your cake and eating it too.)

FIND-MAX-MIN (List, lower, upper)
{ Find the indices of the largest and smallest of List[lower..upper].
upper > lower > 0. }

case upper - lower + 1
=1:

return lower, lower
=22:

if List[lower] > List[upperj
then return lower, upper
else return upper, lower

>2:
mid i-- [(lower + upper)/2]
max1 , min, +- FIND-MAX-MIN (List, lower, mid)
max2 , min2 <-- FINDIMAXKMIN (List, mid + 1, upper)
if List[max1 ] > List[max2 ]

then max •- max1
else max -- max2

if List[mini] > List[min2]
then min- min2
else min - min1

return max, min

Algorithm 3.5

This algorithm is already better than 2n - 3 for n as small as four
since it finds the best and worst of four wrestlers in four fights, not five
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(= 2 x 4 - 3). See figure 3.13; dashed lines indicate the next fight. Note
that it doesn't matter who wins the first three fights, the posets that result
have the same shape, but the last fight can have two different poset out-
comes. However in both final posets it is easy to pick out the best and
worst wrestlers. Both posets contain the minimal max-min poset for n = 4
as a subposet.

Figure 3.13 Finding max and min of four things in four fights

FIND-MAX-MIN leads to the recurrence

0 n=1
f(n) = 1 n =2

f (kn/2]) + f (fn/21) +2 n > 2

and it is possible to show that for n > 2

n - 2Lgn n3x2Lgnf(n) = 3--nn - 2+-2+ 2 <3x2l -

2 2[Lgnj+l - n otherwise

2

From this it is possible to show that f(n) 3n/2 - 2 when n =2i or
n = 2i ± 1, and f(n) = 5n/3 - 2 when n 3 x 2i. In figure 3.14 the
straight line represents the cost of the naive algorithm and the two dotted
lines are 5n/3 - 2 and 3n/2 - 2. The broken line, f(n), lies between the
two dotted lines, so the divide and conquer algorithm is always better than
the naive algorithm. (For clarity, the horizontal scale is doubled.)

Pause Check that f(n) = 3n/2 - 2 when n = 2i or n = 2i ± 1.
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2n -3
25

• f(n)

20

15

10

5

1 2 3 4 6 8 12 16

Figure 3.14 Finding max and min recursively and naively

So by using divide and conquer we've reduced the number of fights by
roughly twenty-five percent when n is within one of a power of two. See
table 3.2.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2n-3 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
f(n) 1 3 4 6 8 9 10 12 14 16 18 19 20 21 22

Table 3.2 Cost of recursive max-min versus the naive algorithm

But wait a minute, something's wrong here. The algorithm takes eight
fights to find the best and worst of six but from the table we see that we
can manage with only seven fights! Instead of dividing six into two sets of
three, divide them into two sets of sizes four and two. Finding the best and
worst of four and two takes five fights altogether. Finding the overall best
and worst takes two more fights (see figure 3.15). That takes seven fights

Figure 3.15 Two ways to find max and min of six things
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in all, not eight! So although it's an improvement, algorithm 3.5 [p. 183]
is not optimal.

Why does this happen? Divide and conquer is supposed to balance the
work; shouldn't that always minimize the overall work done? Well, we
want to minimize the work, not necessarily balance the input sizes. It is
only coincidental that if we divide as closely as possible then we sometimes
do the least work. Of course if we divide exactly then we always do the
same amount of work on each recursion. But we can only divide exactly
all the time when n is a power of two. Further, even if we always divide
evenly we may still be doing more work than necessary.

Pause Since the algorithm is good when n = 2 i, what should we do if n = 2i +2j'?
What does that decomposition suggest?

Figure 3.16 shows two ways to recursively divide six things into two
parts. Although the three-three split is initially good (an exact split) it is
later bad because each three makes a bad split, whereas the initially bad
four-two split always splits well since both are powers of two. This is the
source of the savings of one fight when n 6.

2 2 ; 11\ 2 3 1 2 11 / 11 1zl1/ \1 1 / \ 1

Figure 3.16 Two ways to recursively divide six things

Finally, because the algorithm is recursive, a small improvement for
small n forces a large improvement for large n. If n = 6 costs seven
and not eight, then n - 12 costs sixteen, not eighteen, n = 24 costs thirty-
four, not thirty-eight, and so on, with an exponential improvement every
time n doubles. Whenever we design a recursive algorithm we should pay
careful attention to its performance for small n.

Designing Algorithms Using Recurrences

Many algorithms solve the same problem. Surprisingly we may stumble
across new algorithms by examining a recurrence without thinking of any
algorithm. Manipulation of the recurrence alone gives other forms of the
recurrence that can then suggest new algorithms!
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This sounds like a pretty goofy idea, but consider the recurrence

0 n=1
f(n) = 1 n = 2

min {f(k)+f(n-k)}+2 n >2
1<k<n-1

This recurrence models the bizarre idea of trying out all possible ways
of dividing n things into two sets, finding the best and worst of each of
the two sets, then finding the overall best and worst. (See table 3.3; the
best values are boxed.) Looking at the first few values we might guess

that the minimum always occurs when k = 2. Suppose this is true, then

0 n=l
f (n) = 1 n -- 2

1f(2)+f(n-2)+2 n > 2

This recurrence suggests finding the best and worst of any two wrestlers
(at a cost of f(2)), recursively finding the best and worst of the remaining
wrestlers (at a cost of f(n -2)), then finding the overall best and worst in
two more fights. See algorithm 3.6. This algorithm uses exactly [3n /21- 2
fights.

k

n 1 2 3 4 5 6 7 8 best k min cost

3 Fj F3 12 3

4 5 - 5 2 4
5 7 q 7 23 6

6 9 [7 8 F7 9 24 7

7 11 E[ -9] F9 F91 11 2345 9

8 13 06 11 01 11 F10 13 246 10
9 15 1 [2] 12 [] 2] 12 15 234567 12

Table 3.3 Cost of finding the max and min

Pas Why is this true?



188 3 SELECTING

FIND-MAX-MIN (List, lower, upper)
{ Find the indices of the largest and smallest of List[lower.upper].
upper > lower > 0. }

case upper - lower + 1
=1:

return lower, lower
=2:

if List[lower] > List[upper]
then return lower, upper
else return upper, lower

>2:
if List[lowerj > List[lower + 1]

then max1 ,- lower; min, - lower + 1
else max, *- lower + 1 ; min1 - lower

max2 , min2 +- FINDMAX-MIN (List, lower + 2, upper)
if List[max1 ] > List[max2 ]

then max m max,
else max -- max2

if List[minij > List[min2]
then mrin - min2
else min <-- min1

return max, min

Algorithm 3.6

Since f(2) = 1, the recurrence is equivalent to the simpler recurrence

0 n=1
f (n) = 1 n =2

f(n-2)+3 n > 2

This gives a bound of [3n/21 -2 since every three fights remove two more
wrestlers from consideration (there is one extra when n is odd). Fig-
ure 3.17 is a graph of the difference between this algorithm and the first
algorithm, algorithm 3.5 [p. 183]. As the graph shows, the first algorithm
uses F3n/21 - 2 fights only when n is within one of a power of two. If n
is not a power of two then it does progressively worse than [3n/21 - 2,
reaching a maximum relative bloat when n is three times a power of two.

Pause Show that algorithm 3.5 [p. 183] does up to n/6 more comparisons than
algorithm 3.6.
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Figure 3.17 Extra fights done by divide and conquer max-min

The Lower Bound

Now let's show that [3n/21 - 2 is optimal by examining all possible states
any algorithm solving the problem must go through. A lower bound
derived this way is called a state space lower bound.

We need to track the elements who are still candidates to be the best (or
worst). So there are four kinds of elements of interest (see figure 3.18):

"* Novices: those who have not been compared.

"* Winners: those who have won at least once and have not lost.

"* Losers: those who have lost at least once and have not won.

"* Moderates: those who have both won and lost at least once.

Figure 3.18 Four kinds of elements when finding max and min

Let the quadruple (i, j, k, 1) represent the state of the n elements at any
time, where i, j, k, and I are the numbers of novices, winners, losers,
and moderates. Every algorithm finding the best and worst starts in the
state (n, O, 0, 0) and ends in the state (0, 1, 1, n - 2). We want to show that
it is impossible to get from the first state to the last state without using at
least F3n/21 - 2 comparisons.
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Every comparison the algorithm does can only be one of ten kinds:
novice and novice, novice and winner, and so on. No comparison involv-
ing a moderate element can decrease the minimum number of comparisons
necessary to find the best and worst in the worst case, so we can ignore
these four comparisons.

Pause Do you believe this?

Table 3.4 lists the six remaining kinds of comparisons and their pos-
sible outcomes. The last three kinds of comparisons have two possible
outcomes. For example, in the winner versus novice comparison, the first
transition results if the novice lost and the second results if the novice won.
See figure 3.19; in the first outcome the novice turns into a loser, in the
second outcome the novice turns into a winner and the winner turns into
a moderate.

(i, j, k, 1) Goes To

V:V (i-2, j+1, k+1, 1 )

W:W (i, j-1, k, I+1)

L:L (i, j, k-i, 1+1)
L:V (i-1, j+1, k, I ) or (i-1, j, k, 1+1)
W:V (i-1, j, k+1, 1 ) or (i-1, j, k, 1+1)
W:L (i, j, k, I ) or (i, j-1, k-1, 1+2)

Table 3.4 Comparison outcomes for the max-min problem

Now let's invent an adversary who forces every transition to be one of
the left-hand outcomes in table 3.4. The simplest way to do that is to

winner
winner novice loser

winner

moderate

Figure 3.19 A winner fights a novice
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have the adversary say that the outcome of comparing a winner with any-
one but another winner is that the winner wins (and similarly, have losers
lose). The adversary handles any other comparison arbitrarily but consis-
tently with previous decisions. Against this adversary, any algorithm com-
paring a winner with a loser is wasting a comparison, since the adversary
will always make the winner win. So against this adversary an algorithm
can compare winners to losers till it's blue in the face and never get any
closer to the state (0, 1, 1, n - 2). So we can forget about winner versus
loser comparisons.

Ps Does this explain why we can ignore comparisons involving moderates?

Table 3.5 lists the five remaining kinds of comparisons and the outcomes
the adversary forces. Now observe something very interesting about this
table: the first three kinds of comparisons preserve the sum i + j + k!
Since initially i + j + k = n, and finally i + j + k = 2, then no matter
what else an algorithm does it must do at least n - 2 winner versus winner
and loser versus loser comparisons. (Alternately, only those two kinds
of comparisons increase the number of moderates, and that number must
increase from 0 to n - 2. )

(i, j, k, l) Goes To
V:V (i-2, j+1, k+1, I )
L:V (i-1, j+1, k, 1 )

W:V (i-i, j, k+1, 1 )

W:W (i, j-1, k, l+1)
I:L (i, j, k-I, 1+1)

Table 3.5 Simplified outcomes for the max-min problem

Pause Now show that comparisons involving moderates can't reduce the
worst cost.

Further, the number of novices, i, must decrease from n to 0. But
only the first three kinds of comparisons decrease i, and none of them
decrease i + j + k. So none of them can be in the n - 2 previously counted!
Therefore the algorithm must do at least Ln/2j more comparisons since the
fastest way to decrease i is to compare two novices. (It could use either
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of the two other kinds of comparisons, but they are slower. ) Thus, overall
any algorithm must do at least n + Ln/2j - 2 = L3n/2] - 2 comparisons.
Finally, when n is odd we can only compare the last novice to a winner or
loser, so we need one more comparison for a lower bound of F3n/21 - 2
comparisons to find the best and worst of n things.

Pause Show that L3n/2J + n mod 2 = [3n/2]. (n mod m is the remainder on
dividing n by m.)

Therefore, finding the best and worst requires F3n/21 - 2 comparisons
in the worst case. So FIND-MAX-MIN has optimal worst cost within the
comparison-based model.

3.5 Finding the ilth Best
As long as a branch of science offers an

abundance of problems, so long it is alive; a
lack of problems foreshadows extinction or
the cessation of independent development.

David Hilbert,

"Mathematical Problems,"
Bulletin of the American Mathematical Society, 8, 438

Finding the best was easy, finding the second best was harder; how hard
is it to find the ith best? First, we'll design an algorithm (algorithm 3.8)
to find the ith best quickly on average. Then we'll tighten it to produce
another algorithm (algorithm 3.9 [p. 203]) to find the ith best quickly in
the worst case.

We have to produce a poset like the one in figure 3.20. So we have
to find an element splitting the list into two bags of sizes i - 1 and n - i.
Beyond that division we don't care what order the elements are in, so
sorting the whole list seems like overkill. How about divide and conquer
again? Hmm, finding the "midpoint" of a list is the same as finding the
median of the list and, intuitively, the median should be the hardest to
select.

ON• i-1

X n-i

Figure 3.20 A minimal ith best poset



3.5 Finding the ith Best 193

The median-the [n/21th best-should be the hardest to select because
it looks like selecting the ith is harder than selecting the (i + 1)th and
because we can reverse comparisons; selecting the i` best is exactly as
hard as selecting the (n - i + 1)th best. (See figure 3.21; note that there
are two medians if n is even. ) For a long time it was thought that the
selection problem was in general Q(n Ig n) because no one could find a
better way to find the median than first sorting then choosing the median.
Unfortunately, no one could find a lower bound that was better than linear.
And that's good, because there isn't one.

Figure 3.21 All minimal median posets with up to seven nodes

Okay, we probably can't find a midpoint easily; what if we find an arbi-
trary split? Let's choose an element and split the list based on this ele-
ment. That is, compare the selected element-let's call it the pivot-with
every other element in the list; larger elements go in one bag, the top
bag, and smaller elements go in the other, the bottom bag. This is SPLIT,
algorithm 3.7; it costs n - 1 comparisons.

SPLIT (List, lower, upper,pivot-loc)
{ Split List[lower.upper] into two parts, those less than
List[pivotloc] on the left and those greater than it on the right.
Return the pivot's new position.
upper > pivot-loc > lower > 0. }

pivot +- List[pivot-loc]
List[lower] +-+ List[pivot-loc] ; pivot-loc <-- lower
for index from lower + 1 to upper

if pivot > List[index]
pivot oc <- pivot loc + 1
List[index] +-* List[pivot-loc]

List[lower] - List[pivot-loci
return pivot loc

Algorithm 3.7

If we're lucky, the top bag will have exactly i - 1 elements so the pivot
will be the ith best. But even if the top bag has more than i - 1 elements
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then we don't have much work to do to finish, since we only have to find
the ith best of the top bag. Similarly, if j is the size of the top bag and j
is less than i - 1 then we only have to find the (i - j)th best of the bottom
bag. So we are doing a kind of fuzzy binary search. Each "probe" costs
k - 1 comparisons, where k is the size of the current bag.

Finding the ith Best By Randomizing

FIND (algorithm 3.8) chooses a pivot and calls SPLIT to split the list around
this element. The pivot could always be the worst (or best) of the remain-
ing elements, and each call to SPLIT costs a linear number of comparisons.
Thus, no matter what i is FIND is 0(n2 ) in the worst case. Since FIND ran-
domizes its pivot choice it doesn't have a predictable worst cost; the pivot
is equally likely to be any list element. (See section 2.4, page 123, for a
discussion of randomization. ) Let's now show that FIND is linear on aver-
age and, because of randomization, no assumptions about the probabilities
of the possible inputs are necessary.

FIND (List, lower, upper, i )
{ Find the index of the ith largest of List[lower..upper].
upper > lower > 0; upper - lower + 1 > i > 1. }

index +-- uniform(lower, upper)
pivot loc - SPLIT (List, lower, upper, index)
case upper - pivot-loc

<i-1:
FIND(List, lower,pivot loc - 1, i - upper +pivot-loc - 1)

-i-1 :
return pivot loc

> i-1 :
FIND (List,pivotloc + 1, upper, i)

Algorithm 3.8

Let f(n, i) be the average time FIND takes to select the ith best of n
things. Because the pivot is chosen with uniform probability, it is the ith

best with probability 1/n. If the pivot is the ith best then FIND halts,
otherwise it recurses on one of the two sublists. Suppose the pivot is in
fact the kth best element. Since SPLIT costs n - 1 comparisons then

1n-i
f(n, i) = n- +1 -- f(n - k, i) + 1 0 n f(k-1,i+k-n-1)

n =n nk=l k=n-i+2
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We don't need boundary conditions for this recurrence because, by our
convention, sums collapse to zero when their ranges are empty. So, for
example, f(1,1) = 0, f(2,1) = f(2,2) = 1, f(3,1) = f(3,3) = 7/3,
and f(3,2) = 8/3.

The two sums look a little less frightening if we change variables
to j = n - k + 1.

1 n~ -1 )+n fn jij

f(n,i) = n - I + n f(]-1,i)+ 3n f(n-],i-j)
j=i+l j=l

Now let f (n) be the average cost of FIND averaged over all i. Then

f(n) '-Zf(n,i)
i=1

(See table 3.6.)

n 1 2 3 4 5 6 7

f(n) 0 1 22/9 25/6 152/25 122/15 2522/245

Table 3.6 Average cost of FIND

Therefore,

n

nf(n) = Ef(n,i)
i=1

= n2--n +lnE f(j-li)+ f(n-j'i-j)}nl

i=1 ~i~lj=1

Gosh, this recurrence looks pretty awful. Fortunately we can rearrange
the double sums-maybe they will then be easier to solve. The idea is
called swapping the sum order, and figure 3.22 shows how it works.

n i-1 n-1 I n-I j

P Show that Z Ef(n - j,i - j) = Z 1f(l,k) = E Ef(j,i),
i=1 j=1 1=1 k=l j=l i=1
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nf n n

E 1- f (i, j) = Jf (l,k)
i=1 j=l k=1 l=k

1

E f/(1, j) f(1, 1)
j=1

2

E f(2, j) f(2, 1) + f(2,2)
j=l

n

Ef (n,j) = f(n, 1) + f(n, 2) ++ f(n,n)
j=1 II II II

n n nE f (1, 1) E •f (1,2) ... E- f (1,n)

/=1 1=2 I=n

Figure 3.22 Equivalence of double sums

Swapping the order of both double sums, we see that the two sums are
the same!

nf(n) = n2 n +i{fj)± f'=
n- f 1 ji)n+ ff(j,i)
j=l i=1i=

2 n-1
= -- n + n 4 Jf(J)

j~1

Therefore,
n-I

n 2 f(n) = n3- n2 + 2 E if(j)
j=l

Pause Check that f(1) = 0, f(2) = 1, and f(3) = 22/9.

Now what? This recurrence is much simpler than the first, but it's still
pretty ghastly; how can we simplify it further? The biggest problem is the
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sum; such recurrences are called full-history recurrences because for every
i < n, f(i) contributes to f(n). Now notice that most of the terms of
the sum will appear in a recurrence for f (n - 1) So if we subtract the
equivalent expression for f(n - 1) lots of terms will cancel.

Subtracting the (n - 1)th term from the nth term and simplifying we see
that,

n-1

n 2f(n) - (n - 1)2f (n - 1) = n 3 - n2 + 2 E jf(j)
j=1

n--2

-(n - 1)3 + (n - 1)2 - 2 Y jf(j)
j=1

= 3n 2 -5n+2+2(n-1)f(n-1)

==n n2f(n) = (n 2 -1)f(n-1)+3n 2 -5n+2

Now we can quickly napkin f's order:

n 2f(n) = (n2 - 1)f(n - 1) + 3n2 -5n+2
< n 2f(n - 1) +3n 2

==* f(n) < f(n-1)+3
== f(n) < 3n
== f (n) = O(n)

Thus, f is at worst linear! So FIND is O(n) on average.

Having reached our goal we could stop here, but let's press on and see
if we can find FIND's exact cost, we may find some more weapons that
may be useful elsewhere. (Besides, in the heat of calculation we're not
guaranteed to find a simple napkin bound. ) Brace yourself for a further
math attack.

Here is the recurrence again

n 2f (n)= 0 2n=l1
(n 2 - 1)f(n - 1) + 3n 2 - 5n + 2 n > 1

P e Why do we need a boundary value now?
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MORE NAPKINS, PL2ASF,.,

This recurrence would be easy to solve if it weren't for those pesky n 2

and n 2 -1 factors; how can we get rid of them? Let's see if we can develop
some insight by generalizing the recurrence. Consider the recurrence

f(1) n= 1
f(n) {g(n)f(n - 1) + h(n) n > 1

where g and h are arbitrary functions of n and g(n) is non-zero for all
n > 1. This is a first-order linear recurrence. First-order means that only
one prior term, (in this case, f (n - 1)) appears-a recurrence involving,
say, f(n - 1) and f(n - 2), would be second-order. Linear means that
none of the prior terms are higher powers-a recurrence involving, say,
f(n - 1)2, would be quadratic.

Expanding a few terms we see that

f(n) = g(n)f(n- 1) +h(n)

= g(n)g(n - 1)f(n - 2) + g(n)h(n - 1) + h(n)

= g(n)g(n - 1)g(n - 2)f(n - 3) +
g(n - 1)g(n)h(n - 2) + g(n)h(n - 1) + h(n)

This isn't going anywhere, we need to cancel all those g functions some-
how. But wait, nothing prevents us from doing just that!

Define the new function fi(n) where
fi(n)- f(n)

n

fj-g(i)
i=2
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where 1i=j g(i) = g(j)g(j + 1)... g(k) and fJk=j g(i) = 1 if j > k.
( 1- is the Greek letter capital 7r; it stands for "product.") That is

f(n) = (

g(n)g(n - 1) ... g(2)fi(n) n > 1

Now substitute for f (n) in the original recurrence to get:

g(n)g(n - 1) ... g(2)fi(n) = g(n) {g(n - 1)g(n - 2)... g(2)fi(n - 1)}

+h(n)

= =fi(n) = fl(n-1)+ h(n)
g(n)g(n - 1)... g(2)

Except for the messy fraction this is an easy recurrence, its solution is

n

fJ(n) =f(1) + h (i)

i1 fJ g(j)
j=2

If we can solve this then we can find fl, and if we have fi then we have f.
This way of solving recurrences is the transformation algorithm.

So let's change to this new function and see what happens. For our
particular recurrence g(n) = (n 2 - 1)/n 2 = (n + 1)(n - 1)/n 2 and h(n)
(3n 2 - 5n + 2)/n 2 . So

f(n) = g(n)g(n - 1)...g(2)f (n)

(n + 1)(n - 1) (n)(n - 2) (n - 1)(n - 3)
n2(n-) 2  (n - 2) 2

(4)(2) (3)(1)"'" ( - - ( 2 f)(n)

n+1-- 2n fi(n)

After substituting for f in the original recurrence and simplifying we see
that

0 nn=1
fl(n) = f(n - 1) + 2(3n 2 - 5n + 2) n >1

n(n + 1)

Pue Check this-especially the boundary value!
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Thus,

fi (n) 2(3i2 - 5i + 2)
+1)

2n 2 3i 2 - 5i + 2

E i(i +1)

n" 4i- 1
= 6n-4Z-.(.+1)

i=1

Napkining on this sum we see that

4i - 1 4i 4
Si(i+) i+1

so the sum is no bigger than about 16Hn+l. So f, z 6n - 161n(n + 1) and
therefore f ; 3(n + 1) - 81n(n + 1).

This approximation is already good enough for most purposes, but let's
press on to the bitter end. To find the sum exactly we need partial frac-
tions. Suppose r and s are two constants such that

4i - 1 r s
i(i + 1) i i + 1

Then
4i - 1 = r(i + 1) + si = (r + s)i + r

From this it follows that
r=-1, s=5

(We could also find r and s by substituting any two values of i into the
equation defining the partial fractions and solving the resulting simultane-
ous equations.)

Hence,
4i - 1 5 1
i(i + 1) i + 1 i
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Therefore, n5
fJ(n) = 6n-4y-2 51

n+1

= 6n -20E Z + 4Hn
i=2

= 6n-20(Hn-1+ 1 +4Hn

= 6n - 16Hn + 20-n
n+1

Therefore,

n±l n+1
f(n) -2n +f(n) = 3(n + 1) - 8H, -n + ±10 = O(n)

2n n

Ah! The end of our quest. We should feel good about ourselves, we've
just thought our way through a quite complicated problem; cogito, ergo
smug. Although this has been a long and arduous hike, we've learned
a lot about recurrences; we will put this knowledge to use later. As the
psalmist says: though sorrow endureth for a night, yet joy cometh in the
morning.

To sum up, FIND is at worst quadratic, linear on average, and, because
of randomization, it doesn't have a worst case, only worst case executions.

Finding the pth Best Without Randomizing

Now let's design a worst case linear predictable algorithm to select any
element. To find the pth we could find the best, the second best, and so
on, until we get the Pth. Alternately, we could pick any element, find its
rank (by comparing it to every other element), and discard it if it's not
the ith. Both algorithms are predictable. Further, both are quadratic in
the worst case, since both use linear work, in the worst case, to discard
only one element. The only things we can do are to find the rank of an
arbitrary element, or to find an element of constant rank. But perhaps we
can relax our probe and instead of going all the way and finding the exact
rank of an arbitrary element we only find its rank to within a certain range.
Something like "this element has rank in the range a to b." Can we use
this weaker probe to find the ith more efficiently?

Can we modify FIND to select the Pth best in linear time in the worst case
without randomizing? To do so we have to guarantee that we discard a
fixed proportion of the elements at each recursion. We cannot just choose
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our pivot randomly, we must choose a pivot dividing the list into two bags,
where the smaller of the two is always some fixed fraction of the remaining
elements.

We can guarantee to discard a fixed fraction if we choose the median
at each recursion, since at each step we would discard half the elements.
But to find the median we have to solve the selection problem! Instead,
let's find a pivot that is provably close to the median (without knowing
exactly how close) so that when we split with this pivot we will always
discard at least some fixed fraction of the input.

So, how about this: choose a constant, c, take a sample of size n/c
of the list and find the median of the sample, then split the list using the
sample median as pivot. This guarantees that we will discard at least n/2c
elements. (Why?) Depending on how much work we do to find the
sample median in the first place this may be all right. We must try to
balance the work we do to find a pivot against the number of elements that
we can then discard. 7 Unfortunately this requires us to find the median of
n/c elements cheaply, which means we already know how to find medians
cheaply!

Instead, let's divide L into fixed-sized groups, each of size c, find the
median of each group, then recursively find the median of the list of n/c
medians. This median of medians is not necessarily the median of L, but
we can guarantee that if we use it to split L then we will always discard a
fixed fraction of L. Now we split the list using the median of medians as
pivot and recurse on the appropriate sublist. This is SELECT, algorithm 3.9.

Pause What fixed fraction can we guarantee to discard when c = 5?

To find the fraction discarded when c = 5 look at the posets in fig-
ure 3.23. This figure shows the median of medians for n = 5, 15, and 25,
when the sample size is five (the highlighted circles are the medians of
medians for each n). After finding the median of medians of twenty-five
things we know that at least eight are bigger than the median of medi-
ans and at least eight are smaller than the median of medians. So if we
wanted to find, say, the third best element, we know that it cannot be one
of the eight elements smaller than the median of medians (because each of
them is smaller than at least nine others). Therefore after splitting we will
surely discard all eight of those elements less than the median of medians.8

7Note that FIND does no work (measuring in terms of comparisons) to select the pivot, but,
in the worst case, it is only guaranteed to discard one element.

8This is a lower bound on the number of elements discarded. Depending on i we may
discard more-for example, if i = 3 we discard seventeen-but independent of i, we're sure
to discard at least these eight.
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SELECT (List, lower, upper, i)
{ Find the index of the ith largest of List[lower.,upper].
Use the list Medians[1..5[n/5] as extra storage.
upper > lower > 0; upper - lower + 1 > i > 1. }

n +-- upper - lower + 1
for j from 0 to [n/5J - 1

Medians[j + 1] ,- median of List[(lower + 5j)..(lower + 5] + 4)]
if n is not a multiple of 5

Medians[[n/51] ,- median of the remaining elements of List

index <-- SELECT(Medians, 1, [n/51, Fn/101)
Make index the index of the corresponding element of List
pivotioc +- SPLIT(List, lower, upper, index)
case upper -pivot loc

<i-1:
SELECT(List, lower,pivot loc - 1, i - upper + pivot-loc - 1)

=i-1 :

return pivot-loc
>i-1:

SELECT(List,pivot-loc + 1, upper, i)

Algorithm 3.9

Then repeat the entire rigmarole for the at most seventeen remaining ele-
ments. Thus we are doing a kind of fuzzy binary search for the third best
thing. Instead of discarding half the elements at each step, we only discard
roughly 3(n - 5)/10 + 2 = (3n + 5)/10 elements at each step.

Figure 3.23 Median of medians of five, fifteen, and twenty-five things

It is possible to find the median of five elements in six comparisons
so finding the [n/51 medians of five costs 6[n/51 comparisons. SPLIT
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costs n - 1 comparisons, and recursively finding the median of medians
costs f ([n/51) comparisons. Finally, the algorithm recurses on at most
[(7n - 5)/101 elements. So if f(n) is the worst cost of SELECT on n ele-
ments, then

f(n) < f(fn/51) + f([(7n - 5)/101) + 6[n/51 + n - 1

This is not an equality because, depending on i and the ranks of the pivots
found at each recursion, we may discard more elements, but never less.

This is a difficult recurrence to solve exactly. We can show that f is
linear by constructive induction. First we assume that there is a constant r
such that f(n) < rn for all n beyond some constant. Then we plug
the bound this gives into the recurrence and find bounds on r. Then
we choose r bigger than those bounds, thus proving that there is such a
constant. Here we go:

f(n) • rrn/51+r[(7n-5)/101 +6Fn/51+n-1

_<r n+1) + r (n-5+1)+6 (n+1 +n-1

(5 7r 55 3r

(r +-7+1 n+- +5

• (9r+
2 2 )n 3r+10

- 10 n 2

After some further manipulations we find that f(n) satisfies this inequality
if r > 23 and n > 380. So the original induction can now go through as
the theorem:

Vn>380, f(n) < 23n

A more careful algorithm and a sharper analysis shows that the constant
multiplier can be reduced to 3, for large n. This algorithm isn't particularly
practical; the resulting program is complicated and so has high overhead.
Because of high overhead the algorithm is worse than sorting until n is
in the thousands. Unfortunately, not every simple question has a simple
answer.

To wrap up, we know that f = Q(n) because we have two lower
bounds on selection problems (find the best and find the second best)
and either one would do as a proof that the general selection problem
cannot be easier than Q(n). Therefore selecting the ith best is 6(n) in the
worst case in the comparison-based model.
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3.6 The Partition Problem

Mathematics is the tool specially suited
for dealing with abstract concepts of any

kind and there is no limit to its power
in this field.

P. A. M. Dirac, The Principles of Quantum Mechanics

We've now solved four selection problems, each of which could be of
practical value (although, our version of SELECT isn't particularly practical);
how hard is it to select several elements at a time?

In general, what is the worst cost to find the il best elements, the i2 next
best elements, ... , the ik worst elements? This is the partition problem.
Let's denote the worst case number of comparisons needed to solve this
problem by P(il, i2 ,. . I ik).

Recalling our division of problems by type (page 9) we see that selec-
tion is half a search problem (find the ith) and half a structuring problem
(order the input to give the ith). So selection belongs between the previ-
ous chapter (on searching) and the next chapter (on sorting). More gen-
erally, we can think of searching as a partition problem where our input is
a sorted list plus one more element and we have to produce a sorted list,
and we can think of sorting as the particular partition problem in which
each ij is one. So searching, selecting, and sorting are all instances of
partitioning.

To determine P(il, i2,. ik) we must find the worst case number of
comparisons necessary to build the poset shown in figure 3.24. Exact

i2

I\/1..

ik-1

ik

Figure 3.24 The partition problem
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solutions are known for simple instances of the problem, but the general
problem is unsolved. For example, we have seen that

best P(1, n - 1) = n- I

second best P(1, 1, n - 2) = n + lgn] - 2

best and worst P(1, n - 2, 1) = [3n/2] - 2
ithbest P(i-1,1,n-i) = 8(n)

The only other exact results known are (assume n > 6):

P(2, n - 2) = n + [lg(n - 1)] - 2
3 n < 2[Lgni + 2

P(3, n-3) = n+2LlgnJ- 2 2 Lgn +2<n<5×2Llgni-2+2

1 otherwise

3 n < 2gni + I

P(2,1, n-3) = n+2[lgnJ- 2 211gn]+I<n<5x2tlgnj-2+l
1 otherwise

3 n = 2-gnj

P(1,1,1,n-3) = n+2[lgn]- 2 2 [lgnj <n<5x2LlgnJ-2

1 otherwise

Selecting the ith best is the problem of finding P(i-1, 1, n-i). We could
also select the i best elements in order or select them without regard to
order (see figure 3.25). These three partition problems are

"* i best elements: P(i, n - i)

" iph best element: P(i - 1, 1, n - i)

"* i best elements in order: P(1, 1, . . . ,1, n - i)

P(i, n - i) P(i - 1, 1, n - i) Pr(1, 1,D , n - i)
Figure 3.25 Three natural selection problems Darwin forgot
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Now, if we know the best i elements in order then we know the ith,
and if we know the ith then we know the best i elements 9 so,

P(1, 1,. .. , 1, n -i) >_ P(i -1,1, n -i) >_ P(i, n -i)

We have seen that P(1, n - 1) = P(n - 1, 1); finding the best costs the

same as finding the worst. This is a special case of a general duality:

P(il, i2, • . - ik) = P(ik, • • , i2, il)

a poset costs the same if it's turned upside down, forming its dual.
Note that a lower bound on any poset problem can be turned into a

lower bound on the partition problem. For example, we can turn the
lower bound on the best and worst selection problem into a lower bound
for any partition problem:

P(il,i2, . ik) 3•n [ i - ik

Finally,

The ij (kil P (il,i2,. ik) k -1

j=l l=j+l (j=l

The lower bound follows because we must at least connect the elements of
any poset solving the partition problem. The upper bound is the number
of relations we must establish between the elements of any poset solving
the problem. We can always establish these relations by doing a compar-
ison and ignoring any transitively induced relations. Of course by taking
advantage of transitivity, a comparison can gain us much more than just
one bit of information.

We will briefly meet the partition problem again near the end of the
next chapter. It is a special case of an even more general (and even more
difficult) poset problem.

3.7 Changing the Model
A mind that is stretched to a new idea

never returns to its original dimension.

Oliver Wendell Holmes

Suppose we want to find the best wrestler but we only have a limited time
to run the tournament. If we don't have time for n - 1 fights what's the
best we can do? Obviously we can no longer guarantee to find the best

9Interestingly, this last does not follow when n is odd and we have to find the median.
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wrestler so we will have to find an "approximate best." Sometimes a near
best is as good as the real thing. We will, however, want a guarantee that
this wrestler is "near to" the best. What kinds of guarantees can we ask for?

Suppose an algorithm produces X while the best wrestler is really Y.
Here are four kinds of guarantees we could ask for:

1. X=Y.

2. X's rank is "close" to Y's rank:

rank(X) < rank(Y) + "small"

3. X is "usually" Y:

P(X = Y) > "large"

4. X's rank is "usually" "close" to Y's rank:

P(rank(X) <_ rank(Y) + "small") > "large"

The first three properties are special cases of the fourth: when "small" = 0
and "large" = 1 we get the first; when "large" = 1 we get the second; and
when "small" = 0 we get the third. Note that the third guarantee does not
imply the second guarantee; if X : Y then X may be ranked far below Y.
As figure 3.26 suggests, the first guarantee is a special case of the other
three, and the second and third are special cases of the fourth.

2 3g 4

Figure 3.26 Strength of guarantees

Of the four kinds of guarantees we usually only ask for the first, but the
others are important in practice. Let's call algorithms giving any of the last
three guarantees relaxed algorithms. Relaxed algorithms are called different
things depending on the guarantees they give. An algorithm giving the
second guarantee is an approximation algorithm. An algorithm giving the
third guarantee is a probabilistic algorithm. An algorithm giving the fourth
guarantee is usually not even called an algorithm, it's a heuristic.

The difference between these algorithms and "normal" algorithms is dif-
ficult to pin down because what they're called often depends on how well
analyzed they are. For example, a guarantee three algorithm is a proba-
bilistic algorithm if we know the value of "large," but if we don't, it is only
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a heuristic. To make things more confusing, procedures are often called
heuristics (or "rules of thumb") if their success depends on assumptions
about the input. If the input does not satisfy those assumptions then the
heuristic may not work.

We can ask for other kinds of guarantees. Since we usually want
fast algorithms we could sacrifice almost everything to ensure speed on
average. Let f be an algorithm's resource cost, and let I be an instance
of the problem. Here are two kinds of guarantees stressing speed:

"* We always find the best wrestler, and it may take a while but it is
"usually" fast:

P(f(I) < "low") > "large" and

0 < P(f(I) > "high") _< "small"

"* We "usually" find a wrestler fast, and if we do find one then that is
the best wrestler, but sometimes we don't find a wrestler at all:

P(f(I) < "low") > "large" and

0 < P(f(I)= o) < "small"

To further complicate things, "usually" can apply to one problem instance
or to all problem instances of a particular size. We can combine each of the
four previous guarantees with these two guarantees to produce even more
relaxed algorithms. We will untangle this snarl of ideas about algorithms
in chapter seven.

Although they are usually harder to analyze than normal algorithms,
relaxed algorithms are very important in computation and in everyday life.
Speed and simplicity often beats accuracy and sophistication-especially if
the quick solution is biased toward safety. Proofs are preferable but proba-
bility is practical. For example, imagine that Ug and Gug are having a quiet
conversation sometime in the stone age when they both hear a soughing
cough. Ug, an engineer, immediately takes to his heels, but Gug, a the-
orist, stays to investigate whether it really is a saber-tooth tiger or some
natural phenomenon that just sounds a lot like a saber-tooth tiger. Be
careful when shaping your tools-after you shape them, they shape you.

Here's a simple probabilistic algorithm to find the best: find the n - m
best elements then pick one at random. This costs m comparisons. This
algorithm is correct one in (n - m) times, and the average best rank is
(n - m)/2. Note that a probabilistic algorithm is not necessarily a random-
ized algorithm. Instead of picking one of the n - m candidates at random
we could have, say, always picked the first one. Similarly, a randomized
algorithm is not necessarily probabilistic. For example, FIND is random-
ized, but not probabilistic.
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Here's a simple approximation algorithm to find the best: choose m
elements at random then find the best. This costs m - 1 comparisons.
What is the average rank of the best element found?

Let's model this problem as follows: draw m integers at random with
replacement from the set of n integers {1, 2,.... , n } to form a sample (that
is, choose one at random, replace it, then choose the next at random). It
is possible to show that the average best rank is

1 i ... (r+ i1 rnn
(m+nf) 1: mM--1 + 1

As this result suggests, analyzing even simple relaxed algorithms can
require sophisticated mathematics.

If we randomly choose about lg n elements, say, then for large n, with
high probability the best element seen will be close in rank to the best
element. This sampling idea is the basis of many estimation schemes. For
example, to perform quality control in manufacturing it is cheaper to test
only a few products out of many thousands. Besides being cheaper, some-
times we have no choice but to test only a few products since in some
cases, like fuses, we won't know if they work unless we break them.

3.8 Coda-Artists and Artisans

The society which scorns excellence in
plumbing because plumbing is a humble

activity and tolerates shoddiness in
philosophy because it is an exalted activity

will have neither good plumbing
nor good philosophy.

John W. Gardner,

Forbes, "Thought" page, August 1, 1977

In this chapter we used comparisons as our yardstick. Is the number of
comparisons an algorithm does really indicative of its run time? There are
two justifications for using comparisons as a measure of worth. First, some-
times comparisons dominate the algorithm's cost. For example, compar-
isons between long records in a large database are expensive. Second,
even if comparisons are cheap, sometimes the number of comparisons
done is still proportional to the work done, since the outcomes of the com-
parisons direct the algorithm's execution path. So sometimes comparisons
are proportional to run time.
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But often the number of comparisons an algorithm makes does not influ-
ence its run time. For example, the second FIND-SECONDMAX does the
minimum number of comparisons, but it does (n ig n)/2 swaps. If a swap
costs about the same as a comparison then swapping will dominate the
algorithm's run time. The art in choosing a good model lies in identifying
which operations will dominate, or be proportional to, the run time.

There are two kinds of scientists-the theoreticals and the practicals-
and there is much unnecessary wrangling between the two. Theoreticals
sneer that practicals cannot abstract from details, and practicals scoff that
theoreticals aren't connected to reality. But both camps are trying to solve
problems and in this they are mutually dependent. Too close an atten-
tion to practical detail hides important general solutions, but too close an
adherence to theoretical issues hides handy pragmatic solutions. Besides
its elegance, a model is only as good as its predictions. Don't confuse the
thermometer with the heat.

Our next trek takes us into the province of sorting algorithms. Except
for SPLIT and FIND, none of the algorithms presented in this chapter are
particularly important in practice; but they illustrate useful algorithmic and
analytic ideas. We will find a use for several of these insights in the next
chapter. In particular, we will use SPLIT to design the most popular sorting
algorithm known-quick sort.

Endnotes

Computational Ideas
Summarizing information, partial orders, posets, linear orders, poset dia-
grams, state space lower bounds, adversaries, the necessity fallacy, bino-
mial trees, implicit structures, space-time tradeoff, the median problem,
the partition problem, relaxed algorithms, approximation algorithms, prob-
abilistic algorithms, heuristics, estimation.

Mathematical Ideas
"* Finding the variance of a distribution.

"* Designing algorithms by manipulating recurrences.

"* Simplifying double sums by swapping them.

"* Improving the performance of recursive algorithms by improving their
base case performance.
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"* Optimizing divide and conquer algorithms by looking at all possible
ways to divide the work.

"* Solving first-order linear recurrences by transformation.

"* Solving full-history recurrences by subtraction.

"* Solving sums using partial fractions.

"* Finding a function's growth rate by constructive induction.

"* Pascal's triangle.

Definitions
"* relation: a relation on a set is a set of ordered pairs of elements of

the set. If R is a relation we can say either that aRb or (a, b) E R.

"* asymmetric relation. An asymmetric relation is a relation R for which
aRb implies that bRa.

"* transitive relation: A transitive relation is a relation R for which aRb
and bRc implies that aRc.

"* partial order: A partial order is an asymmetric and transitive relation.

"* linear orders A linear order is a partial order under which all pairs of
elements are related.

"* orderable set: An orderable set is a set with a linear order on its
elements.

"* singleton: A singleton is an unrelated element.

"* poset: A poset is a set with a partial order on its elements.

"* subposet: One poset is a subposet of another if there is a relationship-
preserving mapping from the subposet to the poset.

"* dualposet: The dual of a poset is the poset with all relations reversed;
if R is the relation, then aRb in a poset if and only if bRa in its dual.

"* minimal poset: The minimal poset with property P is the smallest
subposet of all posets with property P.

"* tail recursive algorithm: A recursive algorithm is tail recursive if there
is only one recursion and the call is at the end of the algorithm.

"* permutation: A permutation of a set of things is a listing of them in
some order; there are n! permutations of n distinct things.

"* harmonic number: The nth harmonic number is the sum of the recip-
rocals of the first n integers.
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" mode: A mode of a sequence is any of the most frequent elements in
the sequence (any of the elements with highest multiplicity).

"* median: The median of an orderable set is the [n/ 21th best.

"* mean: The mean of a set of numbers is its (arithmetic) average.

"* percentile: The nth percentile of an orderable set is the smallest ele-
ment larger than n percent of the elements of the set.

" variance. The variance of a set of numbers is the average of the
square of the differences of the numbers from the set's average.

" standard deviation: The standard deviation of a set of numbers is the
square root of the set's variance.

" implicit structure: An implicit structure is one whose interpretation
depends on the order of elements, not on explicit pointers.

" random variable: A random variable is a real-valued function defined
on the sample space (the set of events) of an experiment.

" binomial tree: A height m binomial tree is a single node if m = 0,
and two height m- 1 binomial trees connected at their roots if m > 1.

" binomial coefficient: A binomial coefficient is another name for a
value of the choose function, (n).

" linear recurrence: A linear recurrence is a recurrence relating only
first powers of the values of a function.

" first-order recurrence: A first-order recurrence is a recurrence relating
each function value to only one previous function value.

" full-history recurrence: A full-history recurrence is a recurrence relat-
ing each function value to all previous function values.

" partial fraction representation: The partial fraction representation of
a ratio of two polynomials is a decomposition of the ratio into a sum
of proper rational functions of polynomials, where the denominators
of these functions are the factors in the denominator of the ratio.

Constants
"* - = 0.57721 56649 01532 86060...
"* 7r2/6 = 1.64493 40668 48226 43647...

Notation

p = average

m a = standard deviation
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n
"* = H

n
(2)

" n T

"* n mod m = the remainder on dividing n by m.
n

"* flf(i) =f(1)f(2)...f(n)
i=1

"* P(il, i2  , ik) = smallest number of comparisons needed to pro-
duce the corresponding partition poset

Conventions
n

*m > n ==* 1 f(i) = 1
i=m

Tools
* If n is a power of two, an n-node binomial tree costs n - 1 compar-

isons to build.
n 1 n + 1 - 2 [IgnJ

* Z. 2Lgd = -lgnj + 2glg (exercise 20, page 222)

n-1

* Hi = n(Hn - 1) (exercise 21, page 222)
i=1

* Tail recursive algorithms can be easily translated into iterative algo-
rithms. (exercise 34, page 224)

* Euler's approximation: Hn = In n + + 1 +o

n i n nE E f (i, j) Y E f(i, j)
i=1 j=l j=l i=j

* Pascal's relation: (n) =(nl) + (n-)
( 2)

"* lim H( 2)=2
n--o6

"* L3n/2J + n mod 2 = F3n/21

M +(m i-X) mn (m+m

M i 1 M+1



Endnotes 215

0 n=1
mf(n) = 1 n= 2

f(Ln/2J) + f(Fn/21) + 2 n > 2

{ (n - 2Llgn )/2 n < 3 x 2 [lgnj-I
=( f(n) = 3n/2 - 2 + ( 2 [1gnj+1 - n)/2 otherwise

0 n=I
uf(n)= 1 n= 2

f(n-2)+3 n > 2

==f(n) = [3n/21 - 2

S0 n=1
f (n) = 1 n= 2

min {f(k)+f(n-k)}+2 n >2
1<k<n-1

==>f(n) = [3n/21 - 2

fn -1 +f(n - j, i - j ) + f(j - 1, i)
n i=1 j=1 j=i+1

= f(n) = 3n + 13 - 8Hn n + 1
n

n n2f(n)= 0 2n2l
(n 2  1)f(n - 1) + 3n 2 - 5n + 2 n > 1

nn>l
=> f(n) = 3n + 13 - 8Hn n + 1

n

* f(n) <_ f(Fn/51) + f([(7n - 5)/10l) + 6[n/5] + n - 1 = f = O(n)

"* Markov's inequality: If f is non-negative then rP(f(X) > r) _
,u(f(X))

"C (ebygev's inequality: If X has finite variance then
1

P(p(X) + ra(X) _ X _ (X) - ru(X)) __ 1 -T

Notes
Euler's enormous paper production led one author to observe that if "pub-
lish or perish" were real, Euler would be alive today. Euler has a contem-
porary rival who may have already outdistanced him: Paul Erd6s.
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Finding the second best player (in a tennis tournament) was introduced
as a serious problem in 1883 by Lewis Carroll, the author of Alice in Won-
derland; Carroll pointed out that the runner-up is not always the second
best player. The minimum number of games needed to find the second
runner-up was recently solved by Martin Aigner; see Combinatorial Search,
Martin Aigner, Wiley-Teubner, 1988. More than one hundred years after
Carroll's complaint we still don't know the minimum number of games
needed to find the third runner-up.

Exercise 16, page 221, was motivated by an observation in Probability,
Statistics and Truth, Richard von Mises, Dover, republication, 1981. Prob-
lem 11, page 227, is adapted from "On Selecting the Largest Element In
Spite of Erroneous Information," B. Ravikumar, K. Ganesan, and K. B.
Lakshmanan, STAC 1986. Problem 15, page 227, is adapted from "Min-
imean Optimality in Sorting Algorithms," Ira Pohl, Proceedings of the 1 6 th

Annual Symposium on the Foundations of Computer Science, IEEE Com-
puter Society, 71-74, 1975. Problem 16, page 228, is adapted from "Exact
Balancing Is Not Always Good," Marc Snir, Information Processing Letters,
22, 97-102, 1986. Problem 18, page 228, and Problem 19, page 228, are
discussed in Combinatorial Search, Martin Aigner, Wiley-Teubner, 1988.
Exercise 36, page 225, and problem 20, page 228, are adapted from "Find-
ing a Majority Among n Votes," M. J. Fischer and S. L. Salzberg, Journal
of Algorithms, 3, 375-379, 1982. Problem 21, page 228, is from The Art of
Computer Programming: Volume 1, Fundamental Algorithms, Donald E.
Knuth, Addison-Wesley, second edition, 1973.

Further Reading
To find out more about game theory see The Mathematics of Games and
Strategy, Melvin Dresher, Dover republication, 1981. The canonical ref-
erence is also the first book in the area: Theory of Games and Economic
Behavior, John von Neumann and Oskar Morgenstern, Princeton University
Press, 1947.

For a thoroughly researched history of the early development of statistics
see The History of Statistics, Stephen M. Steigler, Harvard University Press,
1986. I strongly recommend Probability, Statistics and Truth, Richard von
Mises, Dover, republication, 1981, as a gentle and impressive introduction
to the foundations of probability theory. For a comprehensive history of
the early development of probability theory see A History of the Mathemat-
ical Theory of Probability, Isaac Todhunter, Chelsea, 1865. The following
book ties together game theory and probability at an elementary level The
Mathematics of Games and Gambling, Edward Packel, The Mathematical
Association of America, 1981.
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One important early use of relaxed algorithms was in primality testing;
see "Probabilistic Algorithms," Michael 0. Rabin, in Algorithms and Com-
plexity: New Directions and Recent Results, J. F. Traub (editor), 21-39,
Academic Press, 1976. For further references see the further readings sec-
tion of chapters six and seven. The following paper puts the analysis of
one class of relaxed algorithms on a sound footing: "Probabilistic Compu-
tations: Toward a Unified Measure of Complexity," Andrew Chi-Chih Yao,
Proceedings of the 18th Annual Symposium on the Foundations of Com-
puter Science, IEEE Computer Society, 222-227, 1977.

For more on selection problems see Combinatorial Search, Martin
Aigner, Wiley-Teubner, 1988. See also Search Problems, Rudolf Ahlswede
and Ingo Wegener, Wiley, 1987. The following paper presented the men-
tioned 3n + o(n) median-finding algorithm: "Finding the Median," A.
Sch6nhage, M. Paterson, and N. Pippenger, Journal of Computer and Sys-
tem Sciences, 13, 184-199, 1976. And the following paper gives the best
known lower bound: "Finding the Median Requires 2n Comparisons,"
Samuel W. Bent and John W. John, Proceedings of the 17t" ACM Sympo-
sium on the Theory of Computing, 213-216, 1985. Finally, the first paper
on producing arbitrary posets is still rewarding reading: "The Production
of Partial Orders," Arnold Sch6nhage, Asterisque, 38/39, 29-246, 1976.

The following books provide more analysis background and more
detailed analysis, but all require advanced mathematics. Probabilistic
Analysis of Algorithms, Micha Hofri, Springer-Verlag, 1987, studies prop-
erties of permutations. Fundamentals of the Average Case Analysis of
Particular Algorithms, Rainer Kemp, Wiley-Teubner, 1984, concentrates
on detailed analysis of random walk algorithms. Generatingfunctionology,
Herbert S. Wilf, Academic Press, 1990. presents a detailed introduction
to generating functions-an algebraic way to solve recurrences. Mathe-
matics for the Analysis of Algorithms, Daniel H. Greene, and Donald E.
Knuth, Birkhauser, third edition, 1990, presents in-depth analysis of a few
recalcitrant recurrences. Combinatorial Enumeration, Ian P. Goulden and
David M. Jackson, John Wiley & Sons, 1983, builds an algebraic theory of
enumeration functions and uses it to solve many problems; it also contains
many worked examples.

For good analyses of sorting and selection problems see Data Struc-
tures and Algorithms: Volume 1, Sorting and Searching, Kurt Mehlhorn,
Springer-Verlag, 1984, and The Analysis of Algorithms, Paul Walton Pur-
dom, Jr. and Cynthia A. Brown, Holt, Reinhart and Winston, 1985; in
particular, Purdom and Brown exhaustively analyze their version of SELECT.

As usual, see The Art of Computer Programming: Volume 3, Sorting and
Searching, Donald E. Knuth, Addison-Wesley, 1973. Knuth exhaustively
analyzes FIND-MAX both in the worst case and on average in The Art of
Computer Programming. Volume 1, Fundamental Algorithms.
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Questions

Each problem that I solved became a
rule which served afterwards to solve

other problems.

Ren6 Descartes, Discours de la MWthode

Exercises]

1. Consider a wheel with k equiangular spokes (each spoke is a diame-
ter of the circle). Suppose the human visual system reacts to a visual
stimulus after one-thirtieth of a second. Express speeds in revolutions
per minute (rpm).

(a) At what speeds must the wheel spin for it to appear motionless?

(b) At what speeds must the wheel spin for it to appear to reverse?

2. To a mathematician, a relation is just a set of ordered pairs: the
ordered pair (a, b) is in the set R if and only if aRb. Here are several
properties of relations.
"R is reflexive on S if Va E S aRa.
"R is irreflexive on S if Va e S aga.

"R is symmetric on S if Va,b G S aRb = bRa.
"R is asymmetric on S if Va,b c S aRb ==> bga.
"R is transitive on S if Va, b, c E S aRb and bRc ==> aRc.

An equivalence relation is a reflexive, symmetric, and transitive rela-
tion.

(a) Show that we can use money to define an equivalence relation
on the set of all things.

(b) Show that the order notation E induces an equivalence relation
on the set of functions.

3. (a) If a relation is not reflexive, is it irreflexive?

(b) If a relation is not symmetric, is it asymmetric?

(c) Show that if a relation is asymmetric then it is irreflexive.

(d) Show that if a relation is irreflexive and transitive then it is asym-
metric.
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4. Viewing a relation as a set of ordered pairs, show that a relation may

be
(a) reflexive, symmetric, and transitive
(b) reflexive, symmetric, and not transitive
(c) reflexive, not symmetric, and transitive

(d) reflexive, not symmetric, and not transitive
(e) not reflexive, symmetric, and not transitive
(f) not reflexive, not symmetric, and transitive

5. Since a relation is just any set of ordered pairs, how many relations
are there on n unlabelled nodes?

6. (a) Develop an adversary to show that n - 1 comparisons are nec-
essary to find the best of n things in the worst case.

(b) Develop an adversary to show that n comparisons are necessary
in the worst case to search for an unknown in a list of n things.

7. (a) Design an optimal algorithm to find the median of three order-
able elements (a sequence of poset diagrams showing compar-
isons will do).

(b) Prove that this problem is equivalent to finding the best and
worst of three elements.

(c) Assume that each input permutation is equally likely. How many
comparisons does your algorithm take on average?

(d) Find three lower bound arguments to show that your algorithm
has optimal worst cost.

8. f(x, y) is a mean if the following properties hold:

Intermediacy: max(x, y) > f(x, y) > min(x, y)
Symmetry: f(x, y) = f(y, x)

Homogeneity: f(rx, ry) = rf(x, y)

(a) Show that the following eight functions are means:

maximum: max(x, y) root mean square: (x2 + y 2 )/2

minimum: min(x, y) harmonic: 2xy/(x + y)

arithmetic: (x + y)/2 contraharmonic: (X2 + y 2 )/(X + y)

geometric: xy heronian: (x + JJ + y)/3

(b) Prove the inequality:
contraharmonic > root mean square > arithmetic > heronian >
geometric > harmonic
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(c) Why should we choose to use the arithmetic mean over any
other mean?

9. Use the transformation algorithm to solve the recurrence

f()= 1 n=l1

f(n)={ 2f(n - 1) + 1 n > 1

10. We can use the insights behind manipulating double sums to find the
value of single sums.

(a) In chapter two (page 120) we found that
n

Zi2-1 = (n - 1)2n + 1

Demonstrate this result by considering figure 3.27.

Z2 0  
- 20

j=1
2

E21 = 21 + 21
j=1

n

E2 n-1 2n-1 + 2 n-1 + 2n-1

j=l

II II II
n--1 n--1 n--1

Z 2' Z2' E 2'
1=0 =1 l=n-1

Figure 3.27 Clever summing

(b) Use this insight to find
n

Sixý-i

i=1

(c) Find the sum a third way by observing that

dn n
d E xi = ixi-1

i=0 i=0

11. Can pivot-loc be 1 in the first recursive call of FIND?
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12. Let f(n, i) be the average time FIND takes to select the ith best ele-
ment from a list of n elements. Show that f(n, i) = f(n, n - i + 1).

13. Consider the set of all n! permutations of n orderable and distinct
elements. Let f(n, k) be the number of such permutations that cause
FIND-MAX (algorithm 3.1, page 165) to perform exactly k assign-
ments.
Show that

(1 k=n
f (n, k) = (n - 1)! k =1

f(n-l,k-1)+(n-1)f(n-1,k) n >k> 1

The numbers f (n, k) are called Stirling numbers of the first kind after
their inventor, the Scottish mathematician James Stirling. (f(n, k) is
the number of permutations of n things with k cycles.)

14. Show that a height m binomial tree has 2m nodes.

15. Show that

0 n=1
f ( n ) = 1 n =2 :=: f (n) = F3n/21 - 2

f(n-2)+3 n >2

16. We have a jar of red and yellow jelly beans and we know that the
ratio of red to yellow beans, r, is between one and two. Based on
our ignorance of the real value of r, let's assume that r is equally
likely to be any fraction between one and two. Then P(3/2 > r > 1)
= 1/2. But 1 > 1/r > 1/2. So P(3/4 > 1/r > 1/2) = 1/2. Hence
P(2 > r > 4/3) = 1/2.

(a) Following the above reasoning, what is P(3/2 > r > 4/3)?
(b) If there are twenty-nine jelly beans why can't seventeen of them

be red?
(c) What is wrong with this conclusion?
(d) Does anything change if we know that there are no more than

five hundred beans in the jar?

17. What is wrong with the following argument?
"We have shown that n - 1 comparisons are necessary to find the
best. By symmetry, n - 1 comparisons are necessary to find the
worst. Therefore 2n - 2 comparisons are necessary to find the best
and worst."

18. What is wrong with the following argument?
"In chapter two we showed that [n/2] + Fn/21 = n, so [n/4J +
Fn/41 = n/2."
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19. Show that

(a) If n is three times a power of two then n = 3 x 2LlgnJ-I.

(b) If n is five times a power of two then n 5 x 2 [lgnJ-2.

n 1 n + 1 - 2IlgnJ
20. Show that Y 2lgij - [lgnj + 2[ignJ

n-1

21. Show that HH = n(Hn - 1).
i=1

22. Show that
n 1 n

(a)n
(a)• ~i+ 1) n + 1

(1 n(n + 3)
(b) .1 i(i + 1)(i + 2) = 4(n + 1)(n + 2)

23. Given that E show that H/(2 lies between 1.5 and23. Gven hat i(i + 1) n + 1
i=1

2. (Its actual value as n tends to infinity is 1.64493....)

24. Full-history recurrences can appear deceptively complicated because
their name depends on how the recurrence looks and not on any
property of the recurring function.
Solve the following full-history recurrences1 nl

n-n-1

(a)f(n n-
f (i) + I n >1

ni=

(b) n-1
(f(i) + n n > 1

ni=

(c)f(n n-
n--1

(d) f(n) = Zif(i)+1 n>-1
i=n=

(d) f(n)= j i (i) + n n >1

To bound (d) recall that E000 1/i! = e.
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25. Show that P(2,3) = 5. (For the lower bound use figure 4.15,

page 278.)

26. The proof outlined in the text of the lower bound for the problem of

finding the best and worst ignores all comparisons involving moder-

ates. Complete the proof. (Hint: Split the problem into two parts.
First consider the adversary's effect on the number of moderates, then

consider the number of novices.)

27. (a) Solve

C1  n=1
f(n) = C2 n = 2

min {f(i)+f(n-i)}+c 3 n > 2
1<i<Ln/2J

(b) Use your solution to bound the worst cost of finding the best,
and also of finding the best and worst.

28. Modify algorithm 3.4, page 177, to work for arbitrary n. Your algo-

rithm should still take n + [lg n] - 2 comparisons.

29. Show that algorithm 3.4, page 177, uses (n lg n)/2 swaps.

30. Let f(n,m)= (n).

(a) Show that f(n, m) = f(n, n - m).

(b) Show that

f (n, m)= 0 n < m

f(n-1,m)+f(n-1,m-1) n_> m

(c) Interpret these results in terms of the number of ways of selecting

m people from n people.

31. (a) Prove Pascal's relation algebraically: (fn) = (n 1)+(n )l

(b) Use Pascal's relation to show that an n-node binomial tree has

(1gfl) level I nodes.

32. Find the growth rates of
Ig n

(a) 1/21g/

( b ) 2 1= ,

33. Find mini + Fn/2'1}.
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34. A tail recursive algorithm is a recursive algorithm that calls itself only
at the end of the algorithm. The first LINEAR-SEARCH (algorithm 2. 1,
page 84) presented in chapter two, for example, is tail recursive.
Algorithm 3.6, page 188, is also tail recursive, and we can unravel it
to get an iterative version, algorithm 3.10.

(a) Why has the precondition changed?
(b) Explain in English what this algorithm is doing.
(c) What is this algorithm's worst cost?

FIND-MAXMIN (List, lower, upper)
{ Find the indices of the largest and smallest of List[lower..upper].
upper > lower > 0. }

if List[lower] > List[lower + 1]
then max -- lower ; min <-- lower + 1
else max -- lower + 1 ; min --- lower

for index from lower + 2 to upper - 1 by 2
if List[index] > List[index + 1]

then
if List[index] > List[max] then max ,- index
if List[min] > List[index + 1] then min - index + 1

else
if List[index + 1] > List[max] then max <-- index + 1
if List[min] > List[index] then min <-- index

if upper - lower + 1 is odd
if List[upper] > List[max]

then max <- upper
else if List[min] > List[upper] then min +- upper

return max, min

Algorithm 3.10

35. Consider finding the second best by splitting the problem into two
parts of sizes k and n - k, finding the best of each, finding the overall
best, then finding the best of the remaining candidates. To minimize
this algorithm's worst cost we must find

n-2+ min max{k,n-k}
O<k<n ýO<k<n

(a) Explain why.

(b) Minimize this expression.
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36. Given a list of n elements, an element of the list is a majority if it
appears more than n/2 times. Design an algorithm that is linear in
the number of element-element comparisons in the worst case that
will find a majority if one exists, and report that there is no majority
if no such element exists.

[Problems
1. Show that we can always draw a poset without having to use arrows.

2. What is the average number of assignments FINDvMAX does if of the n
elements in L only k of them are different, and the number of copies
are mi, M 2 , . . . , k?

3. (a) Show that if we recursively divide n as equally as possible we
will divide unequally up to [n/2J times. It may be helpful to
consider the recurrence

f() 0 n_<l1

f([n/2])+ f([n/2j)+nmod2 n > 1

(b) Show that if splits do not have to be as close as possible that the
number of bad splits is never more than j3(n) - 1, where O3(n)
is the number of ones in the binary representation of n (see
table 3.7).

(c) If all bad splits are equally bad, independent of the split size,
and if we can split arbitrarily, what is the best split?

n 1 2 3 4 5 6 7 8 9 10 11 12

/3(n) 1 1 2 1 2 2 3 1 2 2 3 2

Table 3.7 Number of ones in the binary representation of n

4. Let

1 n =0
f(n) = k

_f(n-- i) n > 0

Assume that lim f(n)/f(n - 1) exists and call it x. Show that
n---ox

(a) k = 1 implies x = 1.
(b) k = 2 implies x =0.

(c) k = n implies x = 2.

(d) 2_>x_>1.
(e) k = - logx (2 - x).
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5. Let f(n) be the cost of the divide and conquer version of
FIND-MAX-MIN (algorithm 3.5, page 183).
Let g(n) = f(n) - f(n - 1).

(a) Show that
1 n=2

g(n) = 2 n =3

g([n/2]) n > 3

(b) Show that for n > 2

f_(n) - 3(2lgn_ -2) +_2(n_-2lgn) n <3 3glgnj-l

2 f1 n -- 22lgnL-1 otherwise

3n -22lgnJ_3n 2 2n<_3x2ln-

2 2 LlgnJ+l - n otherwise

2

6. Consider the following recurrence

0 n=1
f(n) = 1 n= 2

f( 2 lgn>-1) + f(n - 2 Flgnl-1) + 2 n > 2

(a) Show that f(n) = [3n/2] - 2 satisfies this recurrence.

(b) This recurrence is implementable as a recursive algorithm finding
the best and worst elements of an orderable set. How many
levels does this algorithm recurse before it reaches a boundary
value?

7. Show that all binomial coefficients are smaller than the middle bino-
mial coefficient(s). That is, show that

max (n) = ( )
0<k<n k n/2]

8. Develop an adversary using the state space lower bound idea to prove
that n + [lg nl - 2 comparisons are necessary to find the second best.
Your adversary should keep track of the following four classes of ele-
ments: a novice has never been compared; a winner has won at least
once and never lost; a runner-up has lost exactly once; a loser has
lost at least twice.

9. Consider algorithm 3.4, page 177, our implicit implementation of
binomial trees. Let v(n) be the number of times two divides n (see
table 3.8).
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(a) Show that the parent of the element in location n is in location
n + 2v(n).

(b) Show that the element in location n has v(n) children.

(c) Show that the ith child of the element in location n is in location
n - 2i-1.

n 1 2 3 4 5 6 7 8 9 10 11 12

v(n) 0 1 0 2 0 1 0 3 0 1 0 2

Table 3.8 Number of times two divides n

10. An element is maximal in a poset if no element of the poset is larger
than it; an element is minimal in a poset if no element of the poset
is smaller than it. Let max#(P) and min#(P) be the number of
maximal and minimal elements in the poset P.
Demonstrate a lower bound of F3n/21 - 2 comparisons on the prob-
lem of finding the best and worst by considering the function f(P) =
max#(P) + min#(P).

11. (a) Show that if a selection algorithm can make up to k erroneous
comparisons then we need at least (k + 1) n - 1 comparisons to
find the best.

(b) Show that this is worst case optimal.

12. Consider finding the best and worst by dividing n into two pieces.

(a) Prove that if we divide n into two pieces where at least one is
even, then we do no worse than if we divide n into two odd
pieces. (Note that we can only find a division of n into two
odd pieces when n is even.)

(b) Prove that if we divide n into two pieces of sizes 2 and n - 2,
then we do no worse than if we use any other even number.

13. Show that P(2,1,2) = 6. (For the lower bound use figure 4.15,
page 278.)

14. (a) Find P(1,1,1,1,1,1,1).

(b) Show that P(3,1,3) < 10.

15. (a) Show that algorithm 3.6, page 188, takes

3n/2 - 2 + (1/2n)(n mod 2)

comparisons on average.
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(b) Show that this is optimal.

16. The following recurrence frequently arises in the analysis of divide
and conquer algorithms (assume that f and g are non-decreasing):

fPn)= rain {f(k)+f(n-k-1)}+g(n-1) n >0O<k<n-1

(a) Establish conditions on f so that f obeys the following easier
recurrence.

a n=0
f(n) =b n =1

f(n/2J) + f ([n/21) + g(n -1) n >1

(b) Solve this recurrence for g(n) = c and g(n) = n.

(c) Find other instances of g that make this recurrence solvable.

(d) Establish conditions on f so that f obeys the following recur-
rence.

a n=O
f(n)= b n= 1

f( 2r g(n/3)] _ 1) + f(n - 2 [1g(n/3)1) + g(n - 1) n > 1

17. Show that i\m-1 - m (l

18. Show that P(2, n - 2) = n + [lg(n - 1)] - 2.

19. Use decision trees or adversaries to show that

(a) P(i -1,1, n -i)_ l![g (nT n)

(b) P(i-1,1,n-i)Ž_n-i+ lg n !

20. (a) Show that finding a majority element in a list of n elements (see
exercise 36, page 225), if one exists, costs no more than 3n/2+1
comparisons in the worst case.

(b) Show that this is worst case optimal.

21. Show that the variance of the number of assignments FIND-MAX does

is H, - H 2 )•

22. Our analysis of FIND's average cost is for the average over all inputs
and over all i. Find its average cost over all inputs but for a fixed i.
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[Research]

1. Show that P(i - 1, 1, n - i) is unimodal and that the median is the
most difficult element to select.

2. Call a selection problem an order k problem if n - k elements can be
in arbitrary order. We know the solution of all order one problems
(there are only two: P(1, n - 1) and P(n - 1, 1) and they are duals)
and all order two problems (P(2, n - 2), P(1, 1, n - 2), P(1, n - 2, 1),
P(n - 2, 1, 1), and P(n - 2, 2)). We know the solution of some order
three problems: P(3, n - 3), P(2, 1, n - 3), and P(,1, 1, n - 3) and
their duals, but we don't know any higher orders!
Complete the order three problems: find P(1, 2, n - 3), P(2, n - 3, 1),
and P(1, 1, n - 3, 1). How about P(1, 1, n - 4, 1, 1)?

3. How many posets are there with n elements? Observe that the num-
ber of allowed (i, j, k, 1) states in the state space view of the max-min
problem is a lower bound on the number of posets, since although
many posets many have the same configuration, no poset can belong
to two configurations.
Find the number of different kinds of posets allowed by the max-min
problem and use that to bound the number of posets from below.
For n = 1, 2, 3, and 4 the bounds are: 1, 2, 5, and 10. (This is not
difficult. )
In general, we can use every lower bound argument on poset cost
to establish bounds on the number of posets. Use this observation
to find a tight lower bound on the number of different posets on n
elements.

4. Call a problem decomposable if it is possible to model its cost function
with the "try all decompositions" recurrence (page 187). Show that
finding the best and finding the best and worst are the only decom-
posable partition problems. (Intuitively, for any other partition prob-
lem we amass too much information when answering the two sub-
problems, some of which is then thrown away to arrive at the overall
answer. )

5. Suppose we want to find the ith best or the ith worst and we don't
care which. Is this problem easier than finding the ith best? Intu-
itively, in the worst case an algorithm like FIND would have to divide
the set of elements in half at each step, because if it favors one subset
over another it will make our task easier.
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1 2 3 4 5 M617 8

10 11

14

6. Across: Down:
1 Silly Ivan's trite relation's property. (10) 1 Name an element. (4)
6 Powder the derelict alcoholic's stomach.

(4) 3 It certainly looks like she'll bombard. (5)
10 Nursery companion has rhythm; the end but 4Js h sa esls lypt 7

4fa 19s t2e 1sa esls lypt 7

not the start. (5)
11 Gun, permit nervous shuffling. (9)

7 Also known as part of, inter alia, sacrament.12 Limp front to back and I see it but it goes(5
without saying. (8)8Thsmlcopngeseaesaitor

13 A set type will pose before tea. (5) 8n the nkesmal copnygt1 halesaittr
15 Wild eastern sea bird may come in. (5) adtikr.(09 Contains and contained by 13 Across. (8)17 Be present as silicon returns. (2) 14 High quality particle's choices. (10)
18 In what sounds like empty grave, end is 1 apn aiyte ebr 8

encoutered (3)18 Found in the middle, the press take
19 As paper ages, with no pain cries. (5)

21 Til irst ata drm, nraed ull hares.opposing points. (7)
Whoai (7),a orergdbulcags 20 Briefly, submarine team to go down. (7)

22 Dance with an unexpected ending. (5)21Ketasoalird(7
23 A way to traverse a tree in repair. (5)24 Shaky on a limb, I knock out tree. (8)25Syearmostw nbcks.()

27 Draned? o? lirtsens flwer. ~26 Egyptian goddess discovered on Atlantis
28 They slip and skid and lives endIsad(4

disastrously. (5)Isad(4

29 Erotic affirmation returned holding an
unknown. (4)

30 Such rites I disturbed are methods that may
not work. (10)
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I saw, when at his word the formless mass,
This world's material mould, came to a heap:

Confusion heard his voice, and wild uproar
Stood ruled, stood vast infinitude confin'd;

Till at his second bidding darkness fled,
Light shone, and order from disorder sprung.

John Milton, Paradise Lost

0 FAR we've explored two simple versions of the search problem
mentioned in chapter one (page 9). In this chapter and the next

we will tramp through simple versions of the structuring problem. As in
chapters two and three, the property we will focus on is linear order The
sorting problem is to rank an orderable set.

Sorting is useful because it makes finding things, both by value and
by rank, more efficient (imagine how useful a dictionary would be if the
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words weren't alphabetical). Sorting things can also suggest relationships
between them. For example, sorting a list of names is a good way to see
if any name is duplicated. In fact there is no better way to do this.

Here are a few of the things we might want to sort in daily life: playing
cards, ideas, numbers, words, job offers, books, fruit, and socks. Obvi-
ously different things need different tactics. (How should we sort a mil-
lion oranges by size?) Suppose we want to sort a thousand books so
that each book is easy to find. There are many sort keys we could use:
for instance, length, width, weight, binding, color, subject, author, and
title. The actual sort key we use depends on what we find memorable
and how many books it distinguishes; nobody remembers a book by its
weight in micrograms even though this key is probably as good an identi-
fier as author name. Faced with this multitude of things to sort and keys
to sort by, we will, as usual, simplify things considerably so that we can
get started.

Let's use the comparison-based model; we assume only that the input
is orderable. Because sorting is a structuring problem, we also need some
way to preserve the information we derive at each step. Initially, let's
assume that we can preserve this information only by moving elements in
the list. Later we will weaken this restriction and allow ourselves more
work space.

So our problem is that

"* we have a list of orderable elements, and

"* we want a ranked list of the elements.

Our environment is that

"* the list elements are all different (to simplify the analysis),

"* we can derive order information only by comparing elements, and

"* we can preserve order information only by swapping elements.

Our goal is to minimize the numbers of comparisons and swaps. This is
the comparison-swap model.

As you can see this is a pretty restricted problem; we will consider more
general structuring problems in the next chapter.

Input values don't matter to a sort algorithm in the comparison-swap
model; only their relative sizes influence the outcome of a comparison.
So when analyzing algorithms in this model we may assume that the input
is a permutation of the numbers 1 to n. A sort algorithm in our model
cannot assume this (and exploit that information to speed up the sort)
but we can assume this abstraction to simplify analysis.
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4.1 Strategies

'Tis distance lends enchantment to the view,
And robes the mountain in its azure hue.

Thomas Campbell, Pleasures of Hope

Before starting in on specific algorithms let's take a step back and look at
the sorting problem from a distance. We want to put n things in order;
what general strategies will do this? In our model there are only two things
we can do to elements: compare them or move them.

Suppose we divide the input into two parts. There are only four proper-
ties this division can have; and of the four, only two are important. First,
the two parts can be ranked or unranked relative to each other-all ele-
ments in one part can be smaller than all elements in the other, or not.
Second, they can be ranked or unranked within themselves-all elements
in one part can be in order, or not. (See figure 4.1; the figure uses height
to suggest the sizes of input elements. ) Thus there are six possible kinds
of ranking. 1 Of these, only four are important; the other two do not yield
sort algorithms. (Note that because we're considering only ranking, an
algorithm can belong to more than one of the four groups depending on
the sizes of the sublists and on whether the elements of a sublist are con-
tiguous. )

The four important rankings are:

"* The two parts are unranked relative to each other:

"* One part is sorted. This is an insert sort. Examples in this chap-
ter are linear insert sort, binary insert sort, and jump insert sort.

"* Both parts are sorted. This is a merge sort. One example in this
chapter is merge sort.

"* The parts are ranked relative to each other:

"* Neither part is sorted. This is a split sort. One example in this
chapter is quick sort.

"* One part is sorted. This is a select sort. Examples in this chapter
are bubble sort, linear select sort, and heap sort.

Each of the four sort strategies is named after the most expensive stage of
the sort. In a merge sort, merging costs more than splitting; in a split sort,

1The two other properties are that the two parts may have different sizes, and the elements
in the two parts can be contiguous in the list, or not. Each choice of inter-part ranking,
intra-part ranking, size, and contiguity leads to a sort algorithm.
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splitting costs more than merging; in an insert sort, inserting costs more
than selecting; and in a select sort, selecting costs more than inserting.

parts unranked, parts unsorted parts ranked, parts unsorted

(a split sort)

parts unranked, one part sorted parts ranked, one part sorted

(an insert sort) (a select sort)

parts unranked, parts sorted parts ranked, parts sorted

(a merge sort)

Figure 4.1 All possible reduction strategies

The merge sort and split sort strategies suggest recursive algorithms,
since the two subproblems are similar. The insert sort and select sort strate-
gies suggest iterative algorithms, since the two subproblems are different.
In an insert sort, the elements in the sorted sublist have no special rank, so
one way to insert sort is to repeatedly select any element of the remaining
unsorted sublist and insert it in the already sorted sublist. In a select sort,
the elements in the sorted sublist have special rank-any rank will do but
the largest (or smallest) is easiest to find-so one way to select sort is to
repeatedly select the largest of the remaining unsorted sublist and insert it
in the already sorted sublist. The top left and bottom right strategies in the
figure don't lead to sort algorithms; the first just divides the input, and the
second assumes that the problem is already solved!

There are other ways to sort. For example, we can compare every pair of
elements, then arrange elements based on the number of elements they're
less than. This is a count sort. Since a count sort compares every pair of
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elements, it is 1(n 2). Another way to sort is to repeatedly swap any two
elements that are out of order relative to each other. This is a swap sort.

Further, we could leave the comparison-swap model entirely and use
some special property of the input elements. For example, to sort oranges
by size, fruit packers roll them between two slowly diverging pipes with a
series of boxes below. Each orange rolls until the pipes diverge enough for
it to fall into the box below. This is how industry sorts things by size when
the things can roll. As you can see, cheating can provide really effective
solutions; however, because it exploits something other than comparisons,
it won't work for all inputs. We couldn't sort oranges so easily without
gravity-we would have to fake it with suction, or something similar.

Within the comparison-swap model other sort strategies relax the inter-
mediate sorting; in our classification we either sort or don't sort each part,
but we can break each part into further parts and do the same. Gener-
ally speaking, within the comparison-swap model, count and swap sorts
are the least efficient, insert and select sorts are moderately efficient, and
merge and split sorts are the most efficient. One advantage of an insert
sort over a select sort is that we can use it on-line: we can start sorting
even before all elements are present. One advantage of a select sort over
an insert sort is that we can always find the i largest elements even before
the sort ends.

We will first consider swap sorts, then insert sorts, then select sorts, then
merge sorts, and finally split sorts. Then we will find a lower bound on
sorting in the comparison-swap model. Finally, we will speed up sorting
by changing the model and assuming more about the input.

4.2 Swap Sorts

Everything should be made as simple
as possible, but no simpler.

Albert Einstein, Reader's Digest, October 1977

One simple way to sort is to repeatedly scan the input, swapping any out
of order elements. This is a swap sort. One simple swap sort continually
scans the input, swapping out of order neighboring elements until none
are left. This is BUBBLE-SORT (algorithm 4.1 ), so named because elements
"bubble" up the list (from left to right).

Ps Why is this guaranteed to sort the list?
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BUBBLE-SORT (List, lower, upper)
{ Sort List [lower.upper] in increasing order.
upper > lower > 0. }

for unsorted from upper downto lower + 1
for index from lower to unsorted - 1

if List[index] > List[index + 1]

List[index] - List[index + 1]

Algorithm 4.1

If, after some scan, no two neighboring elements are out of order,

then the list is sorted. Further, whenever we meet the largest of the still
unsorted elements we bubble it all the way up the list since, no matter
where it is, it is always out of order with its neighbor. So while reducing
disorder, after each scan BUBBLE-SORT at least puts the next largest element
in its final position. So BUBBLE-SORT is really a disguised select sort.

The ith scan costs up to n - i comparisons and there are n - 1 scans so
BUBBLE-SORT can use up to

n-1 n-1

n-1 n- =E n(n - 1) _0(n
2)

i=1 i=1

comparisons and swaps.
It is possible to improve this algorithm but it's not worth the bother;

BUBBLE-SORT is no better than any other sort algorithm we will invent in this
chapter. And while simple to code, it is not much simpler than our next
algorithm. BUBBLE SORT is good only when the input is nearly sorted to
begin with. Although sorting by swapping neighboring elements is natural
it is not efficient-something that costs nothing isn't always worth the price.

The Average Cost

Since movement is in one direction only, as an element bubbles up the
list we will eventually swap it with all smaller elements that initially were
further up the list. Call the number of smaller elements initially to the
right of each element its inversions. The sum of all inversions of all ele-
ments is a measure of how much work BUBBLE SORT does. Now since
BUBBLE-SORT only swaps neighbors, it only removes one inversion with
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each swap; so its number of swaps is exactly the number of inversions in
the input. Assuming each permutation is equally likely, what's the average
number of inversions?

Pause Any ideas?

As previously observed, we may assume that the input is one of the n!
permutations of the integers 1 to n. The most inversions occur when the
list is in decreasing order-n, n - 1, n - 2, . ,. , 1--and the number of
inversions is then (n), giving us the worst cost above. Any algorithm that
removes only one inversion per swap will do up to (n) swaps. The least
inversions occurs when the list is in increasing order-i, 2, 3, • • •, n--and
the number of inversions is then zero.

Pause So what's the average number of inversions?

The worst cost occurs when the input is in decreasing order, and the
best cost occurs when the input is in increasing order. The sum of the
inversions of these two inputs is (n) + 0. Hmm, the sum of the inversions
of any input and its reverse will always be (n). To see this, pick any
two elements, i and j, and suppose i > j. Now consider any input and
its reverse. If i is below j in one input, then i is above j in the other
(see figure 4.2). So exactly one of these two inputs adds one to the sum
of inversions of the two inputs. But there are (') choices for i and j.
Therefore the sum of inversions of these two inputs must be (n). Hence
the average number of inversions for each of these paired inputs is (n) /2.
Therefore the average number of inversions over all n! inputs is (n) /2. So
BUBBLE SORT, along with all algorithms that only remove a constant number
of inversions per swap, does O(n 2 ) swaps on average.

Figure 4.2 Inversions in an input and its reverse

Pause What's the average number of comparisons?
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4.3 Insert Sorts
And slowly answer'd Arthur from the barge:

'The old order changeth, yielding place to the new,
And God fulfils himself in many ways,

Lest one good custom should corrupt the world.'

Alfred, Lord Tennyson, The Passing of Arthur

Our next strategy is to build a sorted sublist incrementally in one contigu-
ous segment of the list. Let's put each new element in its correct place
relative to the already sorted sublist. This is an insert sort. The ways we
choose to select the next element, and to search for that element's correct
relative position, determine the different types of insert sorts.

Linear Insert Sort

The simplest way to find the relative resting place of the next unplaced
element is to use linear search. At the ith step, insert the next element into
its correct position relative to the already sorted i - 1 elements. This costs
at most i - 1 comparisons. Repeat for i from 2 to n (see algorithm 4.2).
This is linear insert sort.

LINEAR-INSERTSORT (List, lower, upper)

{ Sort List[lower.upper] in increasing order.
upper > lower > 0. }

for sorted from lower + 1 to upper
placeholder -- List[sorted] ; index ,- sorted - 1
while index > lower and List[index] > placeholder

List[index + 1] -- List[index]
index <-- index - 1

List[index + 11 <-- placeholder

Algorithm 4.2

The ith scan costs up to i- 1 comparisons and swaps and there are n- 1
scans. Thus, LINEAR INSERTSORT uses up to

n n-n1

I> 1 : n(n-2 - O(n2)
i=2 a=1

comparisons and swaps.
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As we saw with LINEAR SEARCH (algorithm 2.1, page 84), if we can mod-
ify the list then we can improve implementations slightly by inserting the
smallest possible element in position zero as a sentinel. But here we have
to part company with the comparison-swap model since we need to know
a smallest possible element without doing any comparisons.

If all n! inputs are equally likely, it isn't hard to show that LINEAR-INSERT

SORT is also 0(n 2 ) on average. (Recall from chapter two that on average
a linear search in a sorted list will examine roughly half the elements in the
list. ) Also, the number of swaps is the same as the number of comparisons
in both the average and worst cases. So this is no real improvement over
BUBBLE-SORT.

Binary Insert Sort

instead of using linear search to insert why not use binary search? This
is binary insert sort. Binary search takes up to [lg(i + 1)1 comparisons to
insert the (i + 1)th element, so the maximum number of comparisons of
binary insert sort is

n-1 n

-: [lg(i + 1)1 --rlg i] = n[lgn] - 2 Flgn] + 1 = 0(nlgn)
i=0 i=1

(We found the value of this sum in chapter two, page 120. ) See table 4.1.

n 11 2 3 4 5 6 7 8

f(n) 0 1 3 5 8 11 14 17

Table 4.1 Cost of binary insert sort

There's a big difference between n 2 and n Ig n; Ig n grows so slowly
in comparison to n that n lg n is "almost linear." For example, if n is a
million, n Ig n is about twenty million, but n 2 is a trillion. If n is a million
and a comparison takes one microsecond then n lg n comparisons take
about twenty seconds but n 2 comparisons take more than eleven and a
half days.

This is a great improvement in the worst number of comparisons, but
what about swaps? Since we're sorting in an array, then after we've used
binary search to find the correct position of the ith element we still have
to shift up to i - 1 elements to make room for it. So the sort still takes
f2(n2 ) swaps in the worst case. We can reduce this by using extra indices
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to keep track of the correct relative positions of each element, but this is
expensive because those positions can change after each insertion.

We can reduce the 2(n2) swaps to O(n lg n), in line with the number
of comparisons, but to do so requires significantly more storage and more
overhead per insertion. This insert sort is called tree sort.

4.4 Select Sorts
A mathematician, like a painter or a poet,
is a maker of patterns. If his patterns are
more permanent than theirs, it is because

they are made with ideas.

G. H. Hardy, A Mathematician's Apology

Insert sorts work on one element at a time. But we can split the input
in many ways, thereby producing many different algorithms. The next
strategy carries on from the selection problem of the last chapter: instead
of working on any old element, find the largest element and put it in its
correct place, then repeat the process for the remaining elements (see
algorithm 4.3). This is a select sort. One advantage of a select sort over
an insert sort is that once we find a position for an element, it is in its
final position. One disadvantage of a select sort over an insert sort is that
it doesn't benefit from partially ordered inputs; also, a select sort must be
done off-line-it can be done only when all elements are present.

LINEAR SELECTSORT (List, lower, upper)
{ Sort List[lower.upper] in increasing order.
upper > lower > 0. }

for unsorted from upper downto lower + 1
next-max ý-- unsorted
for index from lower to unsorted - 1

if List[index] > List[next-max]
next max ,- index

List[unsorted] +-+ List[next-max]

Algorithm 4.3

Consider the ith iteration of the algorithm. At this point the largest
i - 1 elements are already in order in the last i - 1 positions in the list.
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LINEAR-SELECT-SORT repeatedly finds the largest of all remaining elements
until there are none left. The ith iteration costs up to n - i comparisons,
therefore LINEAR-SELECT-SORT costs up to

n-I n-1Z-(n - i) = Y i = n(n - 1)/2 = 0(n 2)
i=1 i=1

comparisons. However LINEAR-SELECT SORT uses only 0(n) swaps. The
average number of comparisons and swaps are the same as their worst
cost.

As with LINEAR-INSERT SORT, one reason to use LINEAR-SELECT-SORT is that
it's easy to get right the first time. Also, both algorithms are so simple that
they have low overhead; so both are efficient for small n.

Heap Sort

Let's look a little more closely at the select sort strategy. At each step we
find the largest of the remaining unordered elements. But we throw away
lots of useful information after each scan since the next scan doesn't start
with any information about the second largest (which is now the largest
of the remaining elements). As we saw in chapter three, if we're careful,
then after we have found the largest, the second largest can only be one
of [lg n] elements, and we can identify these elements on our first pass
through the input. So let's keep track of the relative order of elements
when finding the largest and then use that information when finding the
second largest on the next round, and so on. To do that we need a struc-
ture to retain information about the elements' order.

Now what should this structure be like? We could use binomial trees, as
we did in the last chapter, but because the root has [ig nl children we will
lose a lot of information every time we replace it. One way around this is
to build a stronger structure that only allows a constant number of children
for each element. Although the structure will have more information than
a binomial tree (and so will cost more to build) it will be easier to modify
as we remove elements. The simplest such structure has only one child
per element-but in that case we have already sorted the elements! The
next simplest structure allows up to two children per element; in other
words, it's a binary tree.

A heap is a rooted binary tree such that the value of any node is at least
as large as the values of its children. To use heaps to sort we need an
algorithm to fix the heap after we remove the root (the largest element).
Since the root of the adjusted heap will be the largest of the remaining
elements we can repeat the process, each time picking the ripest fruit off
the tree.
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Now how can we fix the heap after we delete the root? Well, we know
that the root of any subtree is at least as large as its children, so when we
remove the root we can just replace it with the larger of its two children
(see figure 4.3). But now we have a problem.2 To make room for the
value-10 node we have to change the value-6 node from being the left
child of the new root to being its right child. (Alternately, we could make
the value-10 node the right child. ) Worse, the new root could have had
two children already! How can we deal with that?

18 ELZII* 12

10 12 10 12 10 6

65 4 65 4 6 5 4

3 3 -3

Figure 4.3 Fixing a heap after deleting its root

Pause Any ideas?

We can avoid both problems by inventing a placeholder node, as we
did in LINEAR-INSERT-SORT. After deleting the root we pick a leaf (any leaf
will do) and put it in the placeholder node-initially the root position. See
step (1) of figure 4.4. (The point of using a leaf is that leaves don't have
children, and, as you know, children complicate things.) At this point the
tree may not be a heap because the new root is not guaranteed to have a
larger value than its children.

Pause Now what?

To guarantee that the root is larger than its children we could find the
larger of the two children and compare it to the newly created root. If it's
smaller than the root then the tree is a heap, if it's larger then we swap it
with the root. See step (2); in the figure we have just swapped the nodes
with values 3 and 16. Now we repeat the process for the placeholder
node until we swap it with a leaf or find that it's larger than the next two
children.

Now to sort, we first form a heap, then repeatedly remove the root and
fix the heap after replacing the root with a leaf until we've reduced the
heap to nothing. So we have two subproblems: creating a heap efficiently
and fixing it efficiently.

2,,... that's the way problems propagate their species. A problem left to itself dries up or goes

rotten. But fertilize a problem with a solution-you'll hatch out dozens." N. F. Simpson, A
Resounding Tinkle,
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18 03

16 12 16.K..> 12

65 4 6 5 4 6
3 3(1)

16 [> 16

12 5 12

05"0 653 4 6
(2) (3)

Figure 4.4 Fixing a heap after deleting its root: second try

Okay, let's ignore the first problem for a bit. 3 Suppose we already have
a height m heap. Removing the root and letting a leaf "trickle-down" the
heap costs at most two comparisons per level of the tree. So a trickle-
down costs no more than 2m comparisons. Now, if we use any of the
deepest leaves, trickle-down never increases the height of the tree. So if we
start with a height m heap then we can force each trickle-down to take no
more than 2m comparisons. Therefore the whole sort costs no more than
2nm comparisons. So we want m, the height of the heap, to be as small
as possible.

Now let's get back to creating the heap in the first place. We want to
minimize heap height. We saw in chapter two that a height m binary tree
can have no more than 2 m+l - 1 nodes: so the shortest possible n-node
binary tree has height at least [lg nj. What's more, there are trees of this
height for all n. A complete binary tree is an ordered, rooted binary tree in
which every non-leaf node has two children and with all its leaves on one
level (see figure 4.5). A left-complete binary tree is a complete binary
tree with zero or more of its rightmost leaves deleted (see figure 4.6).
(As we shall see, forcing the heap to be left-complete leads to a very
efficient sort. ) The n-node left-complete binary tree has height Llg nj; no
n-node binary tree is shorter.

Figure 4.5 All complete binary trees up to height two

3"In skating over thin ice, our safety is in our speed." Ralph Waldo Emerson, "Prudence,"
New England Reformers.
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06>

Figure 4.6 All left-complete binary trees up to height two

Ps Argue by induction that at least half the nodes of a left-complete binary
tree are leaves. Is this true for every binary tree?

Now let's build a heap. There are two natural ways to do this: incre-
mentally by adding leaves to an initially empty heap; and recursively by
creating two subheaps and adding a root. Which is better, adding a leaf
or adding a root? Since the heap is logarithmic and the incremental algo-
rithm takes at most two comparisons per level, it will take no more than
a logarithmic number of comparisons to add each leaf; so its cost is no
worse than 0 (n lg n). But the recursive algorithm is trickier since roughly
half the nodes will be leaves and we don't have to do anything to leaves-
they are already "heaps." So the recursive algorithm begins by saving us
half the work we would otherwise have to do! Is this enough to reduce
the worst cost below Q (n lg n)?

Well, let's see. The recurrence for the worst cost of the recursive algo-
rithm is roughly

f(n) <_ 2f(n/2) + 21gn

After a few steps of substitute and guess we see that

Ig n-I
f (n) _E 2i+l lg(n/2i)

i=0

Ig n-1

= 2 1 21(lgn-i)
i=0

lgn-1 lgn-1

- 21gn E 2/-4 E i2i-'
i=0 i=0

=21gn(2Ign -1) -4((lg n -2)2Ign- + 1)

- 2nlgn-2lgn-2nlgn+4n-4

- 4n-21gn-4
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So although the top-down algorithm is O(n Ig n), the bottom-up algorithm
is linear!

Here's the exact cost. Let f(n) be the worst number of comparisons
needed to fix an n-node left-complete heap. Both subtrees are heaps, but
the root may have to trickle all the way down the heap to find its correct
place. An n-node heap has height [lg nj and we do up to two compar-
isons per level, so f(n) is 2[lgnJ unless n is a power of two, when it is
one less. Therefore,

f(n) = 2[lgnJ - (Lignj - [lg(n - 1)j) = Llgnj + [lg(n - 1)]

With the convention that Llg 0j = 0, this holds for all n. See table 4.2.

n 1 2 3 4 5 6 7 8 9 10 11 12

f(n) 0 1 2 3 4 4 4 5 6 6 6 6

Table 4.2 Cost to fix a heap

Let g(n) be the worst cost of building an n-node left-complete heap
using the recursive algorithm. If the heap has less than two nodes, there
is nothing to do, and if it has two nodes, we must do one comparison. So
g(0) = g(1) = 0 and g(2) = 1. Considering the two types of left-complete
heap shapes (see figure 4.7) we see that for n > 3, g must satisfy

Sf g(n - 2 [lgnJ-,) + g(2LlgnJl - 1) n < 3 x 2 [lgnJ-1
g g(2 Ilg nJ - 1) + g(n - 2 L1g ni) n > 3 x 2 [ignj-l

n < 3 x 2 [lgnJ-I n _> 3 x 2 [lgnj-I

2[lgnj- -_ 1 2 [lgni - 1

elements elements

Figure 4.7 The two possible left-complete heap shapes
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It is possible to show that g obeys the simpler recurrence

g n 0 n < 1

g(n-1)+v(n)+v(n-1) n >1

where v(n) is the number of times two divides n (see table 4.3).

n 1 2 3 4 5 6 7 8 9 10 11 12

/3(n) 1 1 2 1 2 2 3 1 2 2 3 2
v(n) 0 1 0 2 0 1 0 3 0 1 0 2

2/3(n)+v(n) 2 3 4 4 4 5 6 5 4 5 6 6
g(n)=2n-2)3(n)-v(n) 0 1 2 4 6 7 8 11 14 15 16 18

Table 4.3 Binary functions and cost to build a heap

From this recurrence it is possible to show that the cost to build a left-
complete heap is

g(n) = 2n - 2/3(n) - v(n)

where /0(n) is the number of ones in the binary representation of n (see
table 4.3). Finally, it is possible to show that

Vn>3, 2/3(n)+v(n) Ž_4

so for n >_3, g(n) < 2n -4.
Already we can tell that heap sort will not be optimal; g(4 ) = 4 but

we can build the heap in three comparisons-a four element heap is the
same poset as a four element binomial tree. Table 4.4 lists the exact worst
costs to build a heap for small n. Note that the best cost known for a
ten element heap is twelve comparisons, but the best lower bound known
is only eleven comparisons; so we don't know the exact cost for even as
little as ten elements.

n 1 2 3 4 5 6 7 8 9 10

cost 0 1 2 3 5 6 8 8 10 (11,12)

Table 4.4 Exact cost to build a heap for small n

Now it's easy to use heaps to sort. Build a heap as a left-complete binary
tree; this takes no more than 2n- 4 comparisons. Then repeatedly remove
the root, replacing it with any leaf until the tree is empty. This takes
O(n lg n) comparisons since each trickle-down is logarithmic. So in all
the sort is O(nlgn).
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Programming

As with binomial trees in the last chapter, we can implement left-complete
binary trees implicitly. This leads to a version of heap sort using no point-
ers and no extra space.

Left-complete binary trees are neat because we can represent them
implicitly in an array with no wasted space and with no pointers by index-
ing the nodes in left-to-right level-by-level order. This ordering is called
level order. If the heap begins at L[1] then the left child of the node stored
in L[i] is in L[2i] and the right child is in L[2i + 1]. Therefore, the parent
of the node stored in L[j] is in L[Lj/2j] (see figure 4.8). More generally,
we can put the heap anywhere in the array; it does not have to begin at
location one. If it begins at L[lower] then the appropriate access functions
are:

left-child(i) = 2i - lower + 1

right child(i) = 2i - lower + 2

parent(i) = [i +lower- 1l

We can use this array implementation for any ordered, rooted binary tree,
but it's perfect for left-complete trees because it wastes no space. Further,
these access functions can be implemented very efficiently: a multiply or
divide by two is just a shift in binary. Finally, in an actual implementation
these functions would be in-line macros, not separate procedures.

L[1I L[2] I L[31 L[41 I L[5I L[6] I L[7] L[2] L[31

L [41 L [5] L [6] L [7]

Figure 4.8 Representing a left-complete heap implicitly in an array

During the sort we can arrange to always have a left-complete tree when
fixing the heap by always moving the rightmost leaf into the root posi-
tion, L [lower]. As a bonus we can put the old root into the old location of
the rightmost leaf (at the end of the array), and because roots come off
the heap in decreasing order, the array will be in increasing order at the
end of the sort. Truly an elegant use of resources!
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We build the heap starting from n initially unordered elements in no
more than 2n - 4 comparisons by calling FIX-HEAP (algorithm 4.4) on
[n/2j, [n/2J - 1, . . . , 1 elements. Therefore HEAP-SORT (algorithm 4.5)
takes no more than 0 (n lg n) comparisons in the worst case.

Fix-HEAP (List, low, high)
{ Create a subheap within List[lower..upper] in positions low.high.
List[low.high] is already a heap except that
the root node, List[low], may be smaller than its children.
lower and upper are global variables; they are used in
the functions left child and right child.
upper > high > low > lower > 0. }

root ý- low

if high > left child(root)
if high > right child(root)

then
if List[right-child(root)] > List[left-child(root)]

largest-child ,- right child(root)
else

largest child +- left child(root)
if List[largest child] > List[root]

List[largest-child] +-* List[root]
Fix HEAP (List, largest child, upper)

Algorithm 4.4

A Theoretical Improvement

It may seem that heap sort is so elegant that there is no way to squeeze
by with less comparisons. But we can. For example, observe that the
elements on the path from the root to any leaf are in sorted order, so
to find the position to insert a new element we can binary search along
the path from the rightmost leaf to the root! If the heap currently has n
elements then there are [lg(n + 1)J elements along that path, so the search
costs

[lg([lg(n + 1)J + 1)] = [lg[lg(n + 2)]]
= [lglg(n + 2)1

comparisons. (Recall that [lg nj + 1 = flg(n + 1)]. ) It can be shown that
this is within two comparisons of optimality in the worst case. Of course,
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having found the insertion position this cheaply it still costs [lg(n + 2)1
shifts to add the new element. This can be further improved.

HEAP-SORT(List, lower, upper)

{ Sort List[lower..upper] in increasing order.
First build a heap, then repeatedly replace the root

with the next rightmost leaf using trickle-down.
upper > lower > O. }

smallest-parent -- L(upper + lower - 1)/2]
for index from smallest-parent downto lower

FIx-HEAP (List, index, upper)

for index from upper downto lower + 1
List[lower] --* List[index]
FIX-HEAP (List, lower, index - 1)

Algorithm 4.5

4.5 Merge Sorts
All engineering is characterized by the engineer's

dissatisfaction with the achievement of just a solution.
Engineering seeks the best solution in established

terms, within recognizable limitations, and making
compromises required by working in the real world.

E. Yourdon and L. Constantine, Structured Design

So far our sorts work incrementally and contiguously; at any time there is a
sorted and contiguous sublist of elements, and we increase it by including
one new element at a time from the as yet unsorted elements. However,
divide and conquer suggests a more global strategy: split the problem into
two or more large pieces, solve the subproblems, then marry the solutions
to solve the original problem.

Let's consider insert sort yet again. The algorithm seems plausible
enough at the beginning. We tend to think about small numbers of things;
putting one thing in its correct place with respect to three (or five, or
seven) other things does not seem that bad, but what about near the end
of the sort?

Suppose we've already sorted a million elements. What happens when
we only have two more elements to insert? These two elements go into
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the list one at a time and take, using linear search, about half a million
comparisons each on average. (Switching to binary search improves this
to about twenty comparisons each. ) This seems like a bad way to insert
the last two elements.

Pause Why?

If the last two elements were randomly chosen then the smaller one
should be bigger than about one-third of the elements and the larger one
should be bigger than about two-thirds. Suppose we first compare the last
two elements and then insert them as a pair in the long list. That is, take
the smaller of the two and use linear search to find its correct position,
then search from that point on for the correct position of the larger of the
two. On average, inserting the pair should only take about two-thirds of a
million comparisons in all. So on average we expect to save about a third
of a million comparisons!

Ps How many would we save on average if we were inserting three elements
into a million?

This idea is an instance of a general design strategy that isn't widely used;
it's a special case of the balance strategy introduced in chapter two.

The balanced run strategy: Try to make the work done near
the end of the algorithm's run equal to the work done near the
beginning of the algorithm's run.

This strategy will not apply when the greedy strategy applies. Being
greedy means not worrying about future work-just do the least work at
each step. But greed does not always pay.

WH6VJN GREEDY ALGORITHMS GO BAD
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Where do the savings come from? Well, by comparing the last two ele-
ments first we can sequence the two searches; finding the correct posi-
tion of the first reduces the average cost of inserting the next. In gen-
eral, we want to insert m elements into a sorted list of size n. Instead
of treating each of the m elements independently, we first sort them and
then exploit the savings on future insertions by inserting them in order.
Intuitively this should work best when m = n. So let's split the prob-
lem into two halves, sort the halves, then merge the sorted halves. This
is LINEARMERGESORT (algorithm 4.6). LINEAR-MERGE-SORT uses the sub-
sidiary algorithm LINEAR-MERGE (algorithm 4.7).

LINEAR-MERGE SORT (List, lower, upper)
{ Sort List[lower..upper] in increasing order.
upper > lower > 0. }

if upper > lower
mid - [(lower + upper)/2J
LINEAR-MERGE-SORT(List, lower, mid)

LINEARMERGESORT (List, mid + 1, upper)
LINEAR-MERGE (List, lower, mid, upper)

Algorithm 4.6

LINEARMERGESORT'S worst cost is

f~) 0 n_<l1

f([n/2j)+ f(Fn/21)+n-1 n > 1

This recurrence is nothing new. We've already solved several of its
cousins in chapters two and three; for example, see the recurrence for
g(n) on page 117. Using the weapons we discovered in previous chap-
ters it is not hard to show that

f(n) = n[lgnl - 2 [lgn] + 1 = O(nlgn)

(See table 4.5. ) How interesting-this is the same worst cost as
BINARY-INSERT-SORT!

Pause Solve the recurrence.
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LINEAR-MERGE (List, lower, mid, upper)
{ Merge List[lower..mid] and List[mid + 1..upper],
where each is sorted in increasing order.
Use the array Save[lower.. upper] as extra storage.
upper > lower > 0; upper > mid > lower. }

next +-- lower ; lower1 +- lower ; lower2 +- mid + 1
while mid > lower1 and upper > lower2

if List[lower1 ] > List[lower2 ]
then Save[next] ÷- List[lower2 ] ; lower2 -- lower2 + 1
else Save[next] *- List[lower1] ; lower1 ,- lower1 + 1

next -- next + 1
if mid > lower1

then Save[next..upper] •-List[lower1 ..mid]
else Save[next..upper] - List[lower2 ..upper]

List[lower..upper] +- Save[lower.upper]

Algorithm 4.7

LINEAR-MERGE-SORT is elegant but it requires twice as much storage as
every other sort algorithm in this chapter (it needs the extra storage for
LINEAR-MERGE). Further, since LINEAR-MERGE-SORT copies every two sub-
lists to merge them, in practice it is often slower than HEAP SORT. It is
possible to merge with only a constant amount of extra storage but this
complicates the algorithm. The increased complexity leads to higher over-
head costs, which in turn slows the algorithm. This is a direct tradeoff
between time and space; more space for less time and vice versa.' The
space-time tradeoff is like the money-time tradeoff-the value of money is
inversely proportional to the time you have to enjoy it. We will see more
of the problem of balancing time with space in the next chapter.

n 11 2 3 4 5 6 7 8

f(n) 0 1 3 5 8 11 14 17

Table 4.5 Cost of merge sort

4"Nothing puzzles me more than time and space; and yet nothing troubles me less." Charles
Lamb.
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4.6 Split Sorts

A moment's insight is sometimes
worth a life's experience.

Oliver Wendell Holmes, The Professor at the
Breakfast Table

Keeping the idea of breaking up the input into two large chunks, our next
idea might be to divide the parts once and for all-just like the change in
philosophy from an insert sort to a select sort. To split the input once
and for all we can choose an element, the pivot, and split the list into two
pieces: those larger than the pivot and those smaller than the pivot. Then
we sort each separately. Once an element has moved to the left (or right)
of the pivot it remains to the left (or right) of the pivot. This algorithm is
similar to FIND (algorithm 3.8, page 194) of the previous chapter, except
that we have to recurse on both sublists instead of only one.

NATURE DISCOVERS RECURSION

In terms of balancing the work, it would be best if the pivot were the
median of the list of elements, but, as we saw in chapter three, finding
the median is not trivial. Instead let's choose a random element to be the
pivot and use SPLIT (algorithm 3.7, page 193) to split the list around it.
This is QUICK SORT (algorithm 4.8). SPLIT decides which elements are less
than the pivot (the left sublist) and which are greater (the right sublist).
Notice that the pivot element is not used in either of the recursive calls
since it is already in its final position. By analogy with merge sort, quick
sort should really be called "split sort," but it earns its name because it's
perhaps the fastest (on average) sorting algorithm in practice.
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QUICK-SORT(List, lower, upper)
{ Sort List[lower..upper] in increasing order.
upper > lower > 0. }

if upper > lower
index -- uniform(lower, upper)
pivot loc <-- SPLIT(List, lower, upper, index)
QUICK-SORT(List, lower,pivot-loc - 1)
QUICKSORT(List,pivotloc + 1, upper)

Algorithm 4.8

If we select pivots predictably then in the worst case the pivot will
always be the largest (or smallest) element in every recursive call; so in
the worst case we only sort one element after each call. Since each call
takes linear time (because SPLIT takes linear time), QUICK SORT could use
up to £t(n 2) comparisons. But because QUICKSoRT randomizes its pivot
choice it doesn't have a predictable worst cost, only a worst expected cost.
Also, by choosing the pivot randomly we don't have to assume anything
about the input.

To find QUICK-SORT's average cost assume that there are n elements in
the portion of the list from lower to upper. The following recurrence mod-
els QUICK-SORT's average number of comparisons

0 n_<l1
f(n) j n-l+n-(f(i)+f(n-i-1)) n > 1

I i=0

(See table 4.6.) SPLIT does n - 1 comparisons; QUICK SORT chooses each
element as pivot with probability 1/n; and it calls itself recursively on both
sublists. QUICK-SORT does no comparisons if the recursive call is to a sublist
of zero or one elements.

n 1 2 3 4 5 6 7 8

f(n) 0 1 8/3 29/6 37/5 103/10 472/35 2369/140

Table 4.6 Average cost of quick sort

Long Pause How come this recurrence and the recurrence for FIND (page 194) both
sum two recursions, yet FIND only recurses on one sublist while QUICK-
SORT recurses on both sublists?
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This recurrence isn't so bad, we solved a similar but tougher one in the
last chapter (the average cost of FIND, page 194). First, the two terms of
the sum give the same values, but in two different orders: f(0) + f(1) +
• f..+f(n -1) and f(n -1) +f(n -2) +. +f(0). So the recurrence is
equivalent to

0 n<l

f~n) = f-+ - f(i) n > 1

1n i=0

Now multiplying throughout by n we have that

n-1

nf(n) = n(n - 1) + 2 Z f(i)
i=0

Pause What's become of the boundary values?

This is a full-history recurrence so we get rid of the sum by subtracting
f(n - 1) from f(n).

n-1

nf(n)-(n-1)f(n-1) = n(n-1)+2j2f(i)
i=O

n-2

-(n-1)(n-2)-2-f(i)
i=0

= 2f(n-1)+2n-2

Therefore,
nf(n) = (n + 1)f(n - 1) + 2n - 2

At this point we might try the following bit of napkin math: since n + 1
n and 2n - 2 ; 2n, then

nf(n) nf(n-1)+2n
f= f(n) f f(n -1) + 2

= f (n) 2n

So QUICK SORT is linear on average!

Long Pause] Do you believe this?
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Well, let's take a closer look. As we saw with FIND, this is a first-order
linear recurrence with variable coefficients; so we can use the transforma-
tion algorithm we developed in the last chapter (page 199). Following
that algorithm we transform the recurrence using the new function

g(n) - 2f(n)
n+1

Pause Do the calculations to find this transformation for yourself.

Now the recurrence is

0 n=I
g(n) =n4(n - 1)

g(n-1) (n1) n > 1

Thus,
n

g(n) = 4 i 1
+= i0"-1)

Napkining on this sum we see that 4Hn+l Ž g(n) > 2Hn+i since

i-1 i 1
<+i(i +1) i(i +1) =i +1

=4 g(n) < 4Hn+l

and
i-1 1

i>2 = >
i 2

i-1 1
i(i (+1) 2(i + 1)

Sg(n) > 2Hn+1

So g = 9(Hn+1 ). Therefore f = 9(n lg n). So our previous napkin simpli-
fication is wrong! We have to be careful when using our tools; overfamil-
iarity breeds contretemps. The n + 1 factor, instead of an n, multiplying
f(n-1) makes it E(n lg n), not 0(n). QUICK SORT is 0(n lg n) on average.
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SWe can use partial fractions to find the exact result. Expanding into partial
fractions we see that

n

g(n) = 4 i + 1 i

After some simplification we see that

g(n) = 4Hn - 8n
n +

Ps Is this correct?

Therefore,

f(n) = 4Hn - 8 2

= 2(n + 1)Hn -4n
= 2(n+1)(lnn+ Y++--+o(!)-4n

1
= 2nlnn+(2n+2)-+21nn+1+--+o(l)-4n

n
= 2nlnn-(4-2-y)n+2Inn+0(1)

So although QUICK-SORT is at worst 0(n 2), it is 0(n lg n) on average,
and, because of randomization, this is true independent of its input; it
does not have a predictable worst cost, only a worst expected cost.

Programming

This development is enough to write an efficient program but, mindful of
Pope's advice,5 let's consider some practical details.

First, we can improve performance by choosing the base case of the
recursion carefully. Instead of recursing all the way down to sublists of one
or two elements, we can stop short at sublists of ten or fifteen elements and
use, say, LINEARSELECT-SORT, for these small sublists. (We considered the
issue of choosing the base case of a recursive algorithm in chapter three,
page 186). We can tune the sublist size we cut off at depending on our

5"True ease in writing comes from art, not chance,/ As those move easiest who have learn'd
to dance." Alexander Pope, An Essay on Criticism.
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system and language. Depending on the overhead cost of a recursion, this
can greatly speed up the algorithm.

Further, why sort these small sublists at all? It's even better if we don't
sort them during the run (that is, if we just recursively split the list and
stop at small sublists). We can complete the job using an iterative sort,
like LINEAR INSERTLSORT, that is efficient when the list is nearly sorted. How-
ever, by doing so we give up the locality of sorting sublists that are all in
the same page in fast memory. For large data sets, and depending on
our machine configuration, this may outweigh the advantage of postpon-
ing sorting small sublists. As usual, the answer is that there is no final
answer; in practice we have to get detailed information about our particu-
lar environment and tailor the algorithm to that environment.

Now what about space? At first blush it looks like the sort uses no extra
space but actually it uses up to n extra locations to hold the stack that
manages the recursions. (Stacks belong in the next chapter; for now we
can think of them like vertical stacks of books where each book holds the
left and right boundaries of the current sublist. ) If we are a little more
careful and always sort the larger sublist first then the stack depth is never
more than lg n. This works because we at least halve the remaining work
to be done after sorting each sublist. This trick won't help if the algorithm
is recursive, because the parent boundaries will still be on the stack; so if
space is a serious concern we have to rewrite the algorithm iteratively and
manage the stack ourselves.

Finally, how expensive are QUICK- SORT'S calls to uniform? If they're very
expensive on our machine, we might consider simulating the randomiza-
tion step by taking a sample of the list elements, finding the median of that
sample, and using it as the pivot for the splitting step. One popular way to
do this is to find the median of the first, middle, and last list elements and
use that as the pivot. One advantage of this method is that the algorithm
is fast when the list is sorted to begin with.

If, to avoid spending time finding the sample median, we give up ran-
domization altogether and just choose, say, the first element as the pivot,
then in the worst case the algorithm is no better than BUBBLE-SORT! Fur-
ther, the worst cost occurs for the most embarrassing case-when the list is
already sorted. We can think of randomizing the algorithm as scrambling
the input.6 For instance, we can think of the call to uniform as just shift-
ing the pivot element around. All other elements stay in the same place
so each call to uniform stands for n different inputs. Is this equivalent to
scrambling, since it's done recursively? Yes, because SPLIT preserves rela-

6Note that scrambling the input is not allowed if we need a stable sort, that is, if, for example,
we have a sorted set of passenger names and flight numbers and we wish to sort by flight
number while preserving the relative order of passenger names on each flight.
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tive order between all elements less than the pivot and all elements greater
than the pivot. So if the list was random to begin with, the two sublists
are random after splitting.

4.7 Lower Bounds on Sorting
A poem is never finished,

only abandoned.
Paul ValIry, quoted in W. H. Auden,

A Certain World

We've now designed several sort algorithms, what's best possible? As
usual, this depends on what we're looking for. Let's assume that only com-
parisons matter (or, equivalently, that comparisons adequately mirror the
overall work done). What's the smallest number of comparisons needed
to sort n elements in the comparison-swap model?

Well, the poset representing a sorted list of n elements contains every
other poset on n elements as a subposet. So any lower bound we derive
for poset production is also a lower bound on sorting. For example, as
we saw in chapter three, finding the largest and smallest of n elements
is equivalent to building a particular poset starting from the poset with no
relations (a set of n singletons). This max-min poset is a subposet of
the chain of n elements, in which all elements are related. So [3n/21 - 2
comparisons is a lower bound on sorting, since sorting is at least as hard
as finding the largest and smallest. The sorted list of n elements solves
the largest and smallest problem in the sense of chapter three-given the
poset we can find the largest and smallest without any further comparisons.
Table 4.7 lists the best upper bounds we have so far (f(n) is the cost of
binary insert sort) together with the lower bound on finding the largest
and smallest for each n.

n 1 2 3 4 5 6 7 8

f(n) 0 1 3 5 8 11 14 17

[3n/21-2 0 1 3 4 6 7 9 10

Table 4.7 Cost of binary insert sort versus [3n/21 - 2

From the table we see that so far we have optimal algorithms to sort
less than four elements. What is the optimal cost of sorting four elements?
Can it be done in only four comparisons? Or is F3n/21 - 2 a weak lower
bound?
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Information Theory

In 1948, Claude Shannon, an American mathematician, published a paper
outlining a mathematical theory of communication; this paper spawned
a field now called information theory. Put simply, information theory is
about the amount of surprise in a message. The headline: DOG BITES MAN,
is less surprising than: MAN BITES DOG. Let's say that the second message
carries more information than the first, since the chance of the second
event is much smaller than the first (we hope!).

Writing a program that must handle n different possibilities is like play-
ing the game of "Twenty Questions." In this game someone chooses some-
thing, unknown to us, and we have twenty tries to guess what it is by
asking whether it has various properties (for example, "is it green?," "does
it hang on a wall?," and "does it snuffle for truffles?"). In the worst case,
every question at best eliminates only half the possible things the unknown
could be. If we have narrowed the choices to only one possibility, then
we don't need any questions. If there are two possibilities left, we need
one question to tell which it is; if there are three left or four left, we need
two questions, and so on

Similarly, how many "if' tests do we need to distinguish between n cases
in a program? No tests for one case; one test for two cases; two tests for
three cases and for four cases, and so on. Again, what is the minimum
length in bits of an index for a size n array? An array of size one doesn't
require any bits-if an element is in the array it can only be in the first
location.7 An array of size two requires one bit to distinguish between the
first and second locations. Arrays of size three and of four require two
bits, and so on.
In all three cases (game, program, and index) we want to distinguish
among the elements of some domain of things. If every element of the
domain is equally likely, then on average each question (or test, or bit)
can at best only distinguish between two halves of the domain. Each ques-
tion determines one information bit.

The information lower bound: If an algorithm can use only
binary decisions to distinguish between n possibilities then it
must use at least lg n such decisions on average.

Since the worst cost of anything must be at least as bad as the average
cost, this is also a lower bound on the worst cost.

Each of the above three examples assumes that the elements of the
domain are equally likely (or equally surprising); what happens if some

7Technically, we require several bits just to show where the array starts in memory, but this
is a constant overhead for all array locations.
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elements are more likely than others? For example, there are about sixty
thousand active words in English, but only forty-three of them account for
almost half of all words spoken or written. Only nine account for one-
quarter of all words used! (The words are: and, be, have, it, of, the, to,
will, and you. ) Even at the level of letters, English, along with all other nat-
ural languages, is disproportionate (see table 4.8). So a piece of English
text is much more predictable than a random sequence of words. In the
perverse view of information theory, the information content of a poem is
much lower than that of a shopping list.

E 100 S 56 C 27 B 14 X 3

T 71 R 49 M 20 G 14 Z 2

A 64 H 42 F 20 V 10

I 63 D 35 W 18 K 6

0 56 L 35 Y 18 Q 4

N 56 U 31 P 17 J 3

space or punctuation = 166

Table 4.8 Letter frequencies per thousand characters of English

Given an experiment with n disjoint events having probabilities Pi, P2,
Pn, the entropy of the experiment is

n

H(pi,p 2 ,. . ,Pn) =- pklgPk
i =1

where, by convention, we take 0 lg 0 as 0. Figure 4.9 shows the entropy
function for an experiment with two disjoint events.

Information theory uses entropy as a measure of the uncertainty of the
experiment; it tries to quantify the amount of surprise we would feel if
any of the events occurred. Different events may be more likely than
others; if a very likely event occurred we would be less surprised than
if a less likely event occurred. Like every great idea, information theory
is connected to other important ideas. This notion of entropy is related
to that of the Austrian physicist Ludwig Boltzmann's definition of entropy
in statistical mechanics (a branch of thermodynamics he essentially cre-
ated in 1871).8 Independently of Shannon, the American mathematician

8A brilliant yet tragic figure, Boltzmann killed himself in 1906, depressed partly by thirty years

of unrelenting non-acceptance of his ideas by leading scientists of the time, He died just as
physics was waking up to the deep importance of statistical mechanics in atomic theory;
Planck and Einstein were to use his work to great effect in the twentieth century.
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Norbert Wiener ("vee-ner"), a prodigy who finished his doctorate at eigh-
teen, also derived the entropy function, as part of his seminal work on
cybernetics.

H(p, 1 - p)

1S.........

0 1/2 1 p

Figure 4.9 The entropy function for a two-event experiment

For fixed n, the experiment with the least uncertainty is the one in which
one event is certain. It is possible to show that the entropy function is
zero (its smallest value) if and only if one of the probabilities is one.
Further, for fixed n, the experiment with the most uncertainty is the one
with equally likely events. It is possible to show that the entropy function
is ig n (its largest value) if and only if the probabilities are equal. (For
example, figure 4.9 shows that the entropy of a coin flip is smallest when
the coin always comes up heads (or tails); it's largest when the coin is
unbiased.) Finally, if an experiment can be divided into two indepen-
dent parts then the uncertainty of the experiment should be the sum of the
uncertainties of the two parts. It is possible to show that the entropy of
such an experiment is also the sum of the entropies of its two parts. From
these three facts it is possible to show that, up to a constant factor, there
is only one measure of uncertainty that obeys all three conditions; and that
is the entropy function.

In chapter two we used decision trees to derive a lower bound of
[lg(n + 1)1 on the worst number of comparisons needed to search a sorted
list. Information theory gives the same lower bound without explicitly
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using decision trees. Since there are n + 1 possibilities (the unknown, X,
is either one of the n elements of the list, L, or it's not in L) we must
acquire at least [lg(n + 1)1 bits of information. We can obtain each bit of
information only by doing at least one comparison .9

This lower bound argument depends in a subtle way on the statement
of the problem. For example, if we phrase the search problem as: "Is X
in L ?" (expecting the algorithm to answer yes or no), then we could say
that the algorithm has to establish only one bit of information and so the
information lower bound is one! But we feel that the problem as stated is
equivalent to asking "Is X in L and, if so, where?"

Very Long Pause Are they equivalent?

We'll return to the difficult question of how much information we need
to prove a result when we meet zero-knowledge proofs in chapter six
(page 390), and again in chapter seven when we consider the question
of knowledge and proof.

Ps Suppose that if X is not in the list we want to know whether X is less
than L[1] or greater than L[n]. Do we need [lg(n + 2)] comparisons?

Information theory gives lower bounds for searching, selecting, and sort-
ing without having to examine the problem too closely. However, every
silver lining has a cloud; the information lower bound isn't always good.
For example, if L is unsorted we need at least n comparisons to search it.
But information theory only says that we require at least [lg(n + 1)] bits.
True. But not useful. In this case the information lower bound is weak.

One reason for this weakness is that when we model algorithms with
decision trees (which is what we're doing when we apply the information
lower bound) then we allow too many algorithms. For example, decision
trees allow algorithms whose length is a function of the input! The defi-
nition of a decision tree does not require the tree's size to be bounded.
Binary search probes the elements of L in a particular pattern; along any
path from the root to a leaf there is a simple relationship between the
indices of the elements probed. No matter what the search algorithm is,
there must be some such pattern once the algorithm handles inputs of any
size, is predictable, and is of bounded length. However, it is easy to imag-
ine decision trees resulting from algorithms with no particular pattern (for
example, see the beginning of the decision tree for the silly algorithm in
figure 2.7, page 113). These algorithms cannot be of bounded length;

9Since L is sorted, all of these comparisons must involve X; we already know the order of
Lli] and L[j] for all i and j.
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their length must grow with the size of the input. Such algorithms would
be true random algorithms, if such things exist. We will return to this issue
in chapter seven.

The Worst Cost

Information theory gives a good lower bound on the worst number of
comparisons necessary to sort n things. If we only know that the input
is orderable then there are n! possible outcomes-each of the n! permu-
tations of n things. Since, within the comparison-swap model, we can
only use comparisons to derive information, then from information theory
[ig n!] is a lower bound on the worst number of comparisons necessary
to sort n things.

How fast does lg n! grow? We can bound n! from above by overestimat-
ing every term of the product, and bound it from below by underestimating
the first n/2 terms (compare the analysis on page 29).

n times

< nxnx...xnxn = xnn

n!=n x(n-1) x ... x2x 1 n n n n (nn/2>- - -2)
>-2X2 X..X2 X2 \2

n/2 times

Therefore,

nn >_ n! >_ (n )n12

== nlgn > lgn! _> (nlgn-n)

So, for example, 100! has between 85 and 200 decimal digits (remember
to use the log base ten).

It follows that
lgn! = E(n lg n)

Ps Why does this follow?

So, sorting can cost up to Q(n lg n) comparisons. So algorithms like
BINARY-INSERT SORT, HEAP SORT, and LINEAR-MERGE-SORT are asymptotically
optimal.



4.7 Lower Bounds on Sorting 265

We can improve the lower estimate by adapting Gauss's trick of pairing
up large and small terms of En__ i (page 35) to better estimate the prod-
uct 11n 1 i. Observe that if n - 1 > k > 0 then

(k+l)(n-k) = k(n-k)+(n-k)

> kxl+(n-k)

n

Therefore,

(n!)2 = nx(n-i) x... x2xlxnx(n--)x... x2xl

n x (n-i) x ... x 1
= X

1 x 2 x ... x n

> nxn x...xn=nn

=n! > nn/2

This lower estimate improves the bounds to

n n > nl! > n n/2

=> nlgn > lgn! _> n lg n

So 100! has between 100 and 200 digits.
Now we can improve the upper bound by using a more accurate over-

estimate. For example, we can split n! into v/•7 blocks of v•/i terms each.

n! = [n(n-1) ... (n -v-n + 1)] x

[(n - v@n)(n - vn - 1) ... (n - 2Vn- + 1)] x

[(n - (v•ni - 1)v/n)(n - (v'-i - 1)v/-- - 1)... (1)]

< [nvrn] x [(n - I/n_)v""] x ... x [(n - (V/n - 1)v'-)/-)v]

=[,/nv' ]x[ v] -n[v x (vH- 1)1] x... [,v' x 1]
= vn-n x ((-,-n) !) v-

This upper estimate improves the bounds to

n n/2((V/-)!)vn >_ n! > nn/2

½nlgn+vl'Tg((V'/)!) > lgn! > ½nlgn
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Since 10! -- 3,628,800 has 7 digits then 100! has between 100 and 170
digits.

In the same way, we can prove even better bounds, but they are harder to
find. Instead we can derive close bounds with integration. The integral of
a function with respect to x, if it exists, is the area between the function's
graph and the x axis. Consider the graph of In x shown in figure 4.10.
The area of the shorter rectangle is In n since its width is 1 and its height
is In n. Similarly, the area of the taller rectangle is in(n + 1). Further, since
In x is an increasing function, the area of the taller rectangle is larger than
the area under the curve from n to n + 1, which is larger than the area of
the smaller rectangle, which is larger than the area under the curve from
n-1 ton. Thus,foralln>1

[n+1 n

ln(n+1) > Inx dx> Inn > Inxdx>in(n-1)

Adding all n of the inequalities bounding In n, we have that

nl+llnx dx > Inn! > nInx dx

The integral of In x is x In x - x plus a constant, so integrating we see that

(n+l)ln(n+l)-n > Inn! > nlnn-n

In ( n +n) l > inn! > In nn)

Hence
e n + n+l n (n)n

e >n!>

Now recall that e = limno(1 + 1/n)n+l , so ((n- +1)/n)n+l e. Therefore,
(n + 1)n+l z enn+l. Therefore,

n nn>n (n)n
So we've managed to bound n! to within a factor of n. We can improve
this bound to within a factor of roughly vZTn using Stirling's approxima-
tion:

n!, . 7r (n )n

(See table 4.9). This approximation, usually credited to James Stirling,
an eighteenth-century Scottish mathematician, is mostly the work of the
French-born English mathematician Abraham De Moivre.
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f(x) Area> jlnxdx f(x) = Ix

Inn -.---- Area > n+1 lnxdx

n-1 x
n

n±l

Figure 4.10 Using integrals to estimate Ig n!

Using Stirling's approximation we see that

lgn! = nlgn-nlge+llgn+O(1)
= nlgn-nxl.44...+o(n)

So 100! has roughly 157 digits (it has exactly 160 digits.)
In the worst case, sorting requires Q (n lg n) comparisons.

n 1 2 3 4 5 6 7 8
n !

1.084 1.042 1.028 1.021 1.016 1.013 1.011 1.0102ir(n/e)n

Table 4.9 An approximation to the factorials

The Average Cost

To find a lower bound on the average number of comparisons necessary
to sort, let's assume that all input permutations are equally likely. Consider
any decision tree modelling a sort algorithm and associate equal probabili-
ties to each leaf of the decision tree. This probability represents the chance
that that leaf will be reached on a given input. Now we can use the lower
bound on the average path length of a binary tree we found in chapter
two (page 122) when we proved BINARY-SEARCH optimal on average.



268 4 SORTING

If f (n) is the average path length of an n-node binary tree then

f (n)Ž [lg(n+1)]- 2[1g(n+1)1 - [lg(n + 1)] - 1

n

Since any decision tree modelling a sort algorithm must have at least n!
nodes then we have a lower bound on the average number of comparisons
of any sort algorithm of at least

[lg(n!+1)] - 2 [lg(n!+1)1 - [lg(n! + 1)] - 1

which is roughly n lg n. So sorting costs Q (n lg n) comparisons, even on
average.

4.8 Optimal Sorting
Ah, but a man's reach should exceed his grasp,

Or what's a heaven for?

Robert Browning, Andrea del Sarto

What's the minimum number of comparisons needed to sort? Although
binary search is optimal for searching, binary insert sort is only asymptot-
ically optimal for sorting. The information lower bound for sorting five
elements is [ig 5!1 = 7 but binary insert sort takes 8 comparisons, as does
merge sort. See table 4.10.

n 1 2 3 4 5 6 7 8

f(n) 0 1 3 5 8 11 14 17
[lgn!1 0 1 3 5 7 10 13 16

Table 4.10 Cost of binary insert sort versus [lg n!]

Binary insert sort costs
n-1 n

E[lg(i + 1)] = 1 + -F[lg i
i=-1 i=3

but our current best lower bound is

Flgn!] = i =1 E ii

Since there are Flg(n + 1)] powers of two less than or equal to n and
each power of two contributes the same to both sums (since their logs are
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integers), then our current best sort can potentially be up to n - [lg(n + 1)1
comparisons off for n > 5. Is the information lower bound weak, or are
both sorts inefficient?

Well, let's see. Binary insert sort inserts the last two elements into sorted
sublists of size three and then four (which costs two plus three compar-
isons). But perhaps we can apply the balanced run strategy here and
insert them more carefully. Binary search is sensitive to the value of n. In
terms of the work done per element, binary search is most efficient when
n = 2i- 1, and it is least efficient when n = 2i. (See figure 4.11.) Is
there some way to insert both of the last two elements into sorted sublists
of size three?

F g(n+l)l

1

1/2

3 7 n

Figure 4.11 The relative efficiency of binary search

Since inserting into a list of size three is cheaper than inserting into a
list of four, can we partially insert one element into a sublist of size three
in such a way that we can also insert the next into a sublist of size three?
If so, each element cost only two comparisons to insert! If we do this
carefully then five elements take only seven comparisons to sort.

Here's the idea: build the poset o, a binomial tree with four elements.
This costs three comparisons. Now since this poset has a subset of three
elements in order (relative to themselves) we can insert the remaining
singleton element into the chain of three in two more comparisons using
binary search. (See figure 4.12. ) This results in only two different posets,
both of which can be completed into a chain by binary searching the pen-
dant element. This costs seven comparisons in all. We're still using binary
search but we're using it selectively.

More generally, we can use this idea to sort ten elements as well. First
pair the elements (using five comparisons) then form a binomial tree of
size eight with four of the pairs, leaving one pair extra. (See the first
poset in figure 4.13. ) Now comes the key idea: because all the original
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Figure 4.12 Sorting five elements in at most seven comparisons

winners of the pairing round each have one unique descendant we can
treat them as single nodes. That is, we can interpret a binomial tree of
size eight as a binomial tree of size four when each "node" of this tree is
really two nodes.10 (These winner nodes are highlighted in figure 4.13.)
Interpreting the poset this way we can now "sort" it using the strategy we
just devised to sort five elements. And the result is the last poset in fig-
ure 4.13. This strategy of "folding" binomial trees into smaller binomial
trees to sort them can be generalized for arbitrary n.

Figure 4.13 Sorting ten elements by first sorting five elements

Pause How would you sort twenty elements?

1°We can also think of the binomial tree as a binomial tree of size two-that is, just a pair-
since the two sets of four descendants of each node better than four others each have the
same poset structures. Generalizing further, we can interpret a binomial tree of size 2k as
a binomial tree of size 21, for all I < k. In the most general case, it is possible to show
that once two nodes have the same ancestor and descendant poset structures then they are
isomorphic with respect to the poset.
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The general sort is called merge insert sort. First pair elements (using
[n/2J comparisons) and recursively sort the Ln/2j winners of the pairs,
producing a chain of Ln/2J elements with [n/2j pendant nodes (the
losers). Then insert the Ln/2J losers-including the extra element, if n is
odd-into the chain. If f(n) is the worst cost of merge insert sort then

0 n<2
f(n) = I n = 2

f(Ln{2j) +g([n/2l) + [n/2J n > 2

where g(n) is the cost of inserting n pendant nodes.
Now to figure out g(n) let's number the pendant nodes from bottom

to top as is suggested in figure 4.14 (the figure shows only five pen-
dant nodes), then merge insert sort inserts the pendant nodes in the order
shown in table 4.11.

4
3 3 3• 3

2

Figure 4.14 Merge insert sorting ten elements

if we let h(k), k = 1, 2, 3, . . . , be the sequence 0, 2, 4, 10, 20, 42,
.then all pendant nodes numbered between h(k -1) + 1 and h(k) cost

at most k comparisons to insert into the main chain.

2 1

4 3

10 9 8 7 6 5
20 19 18 17 16 15 14 13 12 11

42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21

Table 4.11 Insertion orders of pendant nodes
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Let h(k) >_ n > h(k- 1), then

g(n) = ( j(h(j)-h(j-1))) +k(n-h(k-1))

k-1

= kn-Lh(j)
j=0

= kn- 12
3

Now by induction on n we can show that

Now

2k_2 > n' > [271J
2k+2 2k+1
_== _ > n > 2 +

3 - 3
€==z k+2 > lg3n > k+1

~=~k= [1gb]1

Therefore,
f(n)- f(n-1)= [lg -7]

So each element is inserted at an average cost of [lg(3n/4)] instead of
[lg(n + 1)1; quite a savings! Therefore,

= n[lg(3n)] -2n- [lg6n] + [l+6nJ

Table 4.12 shows that merge insert sort takes thirty comparisons to sort
twelve elements, but [lg12!1 is twenty-nine. Is merge insert sort optimal
for n = 12? Or is the information lower bound weak? Well, it has been
shown by exhaustive search that it is not possible to sort twelve elements
in twenty-nine comparisons, so merge insert sort does the minimum pos-
sible number of comparisons when n = 12. So, perhaps merge insert sort
is optimal for all n? This question took twenty years to answer. Because
merge insert sort depends on efficient merging, before answering the ques-
tion let's see if we can improve merging.



4.8 Optimal Sorting 273

n 1 2 3 4 5 6 7 8 9 10 11 12

f(n) 0 1 3 5 7 10 13 16 19 22 26 30

[lgn!] 0 1 3 5 7 10 13 16 19 22 26 29

n 13 14 15 16 17 18 19 20 21 22 23 24

f(n) 34 38 42 46 50 54 58 62 66 71 76 81

[lgn!] 33 37 41 45 49 53 57 62 66 70 75 80

Table 4.12 Cost of merge insert sort versus [lg n!]

Binary Merging

Suppose n > m. What is the best way to merge two sorted lists of size n
and m into one sorted list of size n + m? LINEAR-MERGE takes up to n +
m - 1 comparisons. But when m is one, BINARY-SEARCH has optimal worst
cost, and it costs no more than [lg(n + 1)1 comparisons. Further, we can
always binary search all m elements in the list of n elements. Let M(m, n)
be the worst cost of merging two sorted lists of size m and n. We've just
established that

M(m, n) < m + n - 1

M(m,n) < mrlg(n + 1)1

M(1, n) = Flg(n + 1)1

Immediately we can tell that m [lg(n + 1)1 is too high a cost when m
is bigger than one, since to get it we ignore the order between the m
elements and treat them independently. As we saw when developing
LINEAR-MERGE SORT, we can do better than that.

What about when n = m? Let's build an adversary for this merge prob-
lem. Let the two sorted lists be Ll[1..n] and L2 [1..n]. The adversary's task
is to intertwine the two lists in the merged list as much as possible. Why?
Well, suppose the adversary allows Ll[i- 1], LI[i], and Li[i + 1] to be con-
secutive in the merged list. Then an algorithm can avoid comparing L1 [i]
to any element of L2 since, by transitivity, it can infer Li[i]'s correct posi-
tion in the merged list by only comparing elements of L2 with Li[i - 1]
and Ll [i + 1]. So the adversary aims for the final ordering

L[11] < L2[11 < L1[2] < L2[2] < "" < LI[n - 1] < L 2 [n - 1] < m1[n] < L 2 [n]

This is easy to do; its strategy is to say that L2 [iJ is bigger than LI[j]
if i > j.
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Since for each i the algorithm must at least test whether L2 [i] > LI[i]
(otherwise, against this adversary, it merges incorrectly) then in the worst
case

M(n, n) > 2n - 1

So LINEAR-MERGE has optimal worst cost when n = m and

M(n, n) = 2n - 1

More generally, it is possible to show that LINEAR-MERGE has optimal worst
cost whenever m < n < [(3m + 1)/21. It is unknown whether it is optimal
outside of this range.

Pause Show that M(n - 1, n) = 2n - 2.

Now suppose we're merging Ll[1..m] and L2[1..n] and suppose the first
comparison involves Li[1]. Which element of L2 should we compare it
to first? If we compare it to L2 [n] and L2 [n] is smaller then we're done,
but if L2[n] is larger we have learned almost nothing. If we compare it
to L2[1] then for neither outcome will we finish the merge right away, but
in both outcomes we have reduced the problem (to M(m, n - 1) or to
M(m - 1, n)). This safe but sure method leads to linear merge; is that the
best we can do?

Intuitively, when m is much smaller than n, then on average the m
elements will end up spread apart by about n/m elements each. So it
seems reasonable to split L2 into sublists of size n/m and probe each with
selected elements of L1. For example, we can binary search each element
of L, in the sublist made up of every mth element of L2. Each element
will take about lg(n/m) comparisons, and we may reduce the problem to
M(m, m), which costs 2m - 1 further comparisons. So in all we may use
about m lg(n/rm) +2m- 1 comparisons. But it isn't clear how to guarantee
this cost.

Intuitively, we want to tradeoff paying more for a comparison between
L1[1] and L2 [n] against our win when L[11] is bigger than L2[n]. Because
that case is so easy (the merge is then finished) we're prepared to pay
much more to get it. So, relative to Li[1], there is a "hardness gradient"
across the length of L2 that gets steeper the further along L2 the compari-
son is. This suggests that comparing L, [1] with L2[[n/21], as binary search
might suggest, is a bad idea. Coupled with the observation that on average
the elements of L1 will end up spaced apart by roughly n/m elements,
this in turn suggests that the first comparison should be between L1[11]
and L2 [n/m]. If L1[1] wins, we can discard the first n/m elements of L2,
reducing the problem to Mr(m, n - n/rm). If L1[1] loses, we binary search
the first n/rm elements of L2 to find its final place, and merge the remaining



4.8 Optimal Sorting 275

m - 1 elements into L 2 at a cost of M(m - 1, n). In effect, we're guaran-
teering that each element of L1 costs at most about lg(n/m) comparisons
to get rid of, one way or the other.

We have two optimal solutions to the merging problem-when m =

1 and when m = n. MERGE, algorithm 4.9, blends these two strategies
based on the ratio of n to m. It uses BINARY-MERGE, algorithm 4.10. This
algorithm is more complicated than the above description; to further reduce
comparisons it plays tricky games with indices.

MERGE (List 1, List2 , n, m )
{ Merge Listi[1..n] and List2 [1..m],
where each is sorted in increasing order.
Return the merged array List[1..(n + m)].
Use next to keep track of the next free location in List[1..(n + mn)].
n>_m>. }

next -- n
while n > 0 and m > 0

if n>m
then

next +- BINARY-MERGE (List 1 , List2 , n, m, List, next)
else

next <-- BINARY-MERGE (List2 , List1 , In, n, List, next)

if n =0
then List[(n + 1)..(n + m)] - List2 [1..m]
else List[(m + 1)..(n + m)] - Listl[1..n]

return List

Algorithm 4.9

Let f(m, n) be BINARYMERGE'S worst number of comparisons, then it is
possible to show that

Sn) n + m - 1 n < 2m
ý f(m, Ln/2])+m n > 2m

From this recurrence it is possible to show that BINARY-MERGE Costs

m [Ign +- m• + [[lg(n/m)J 1
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BINARY-MERGE (List,, List2 , n, m, List, next)
f Merge Listi[1..n] and List2 [1..m],
where each is sorted in increasing order.
List[next] is the next free location counting from the end of List.
n > m >0. }

k ,- 2 [Ig(n/m)J - 1

if Listl[n - k] > List2 [m]
then

List[(next - k)..next] +- Listi [(n - k)..n]
n - n - k - 1 ; next -- next - k - 1

else
1- BINARYSEARCH (List,, n - k, n, List2[m])
List[(next - l)..next] - List,[(l + 1)..n]
next - next - n + ; IList[next] +- List2 [m]
n -- / ; m •- m - 1 next -- next - 1

return next

Algorithm 4.10

The information lower bound for merging two sorted lists of size n
and m is

[lg(n +nm)]

since there are n + m positions in the output and the n elements can end
anywhere in this list once they remain in order.

If n > m it is possible to show that

[lg(n+nm)]+m > M(m,n) -[lg(n+nm)]

so BINARY-MERGE is within m comparisons of worst case optimality. Both
bounds can be improved.

For small m the following exact results are known:

M(m,n) = n + m -1 Vm < n < [(3m-+ 1)/21
M(1, n) = flg(n + 1)1

M(2, n) = [lg7(n+ 1) + [lgl(n+1)]

M(3, n) = [lg2(n+a) ± [lg )(n +)5 + [lg+2)(7n +13)1

The result for m = 3 holds only for n > 9. The smaller values are
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M(3,6)=7, M(3,7)=8, andM(3,8)=8

Finally, M(4, n) is known and very tight bounds are known for M(5, n).

Beating Merge Insert Sort

Sadly, although merge insert sort is elegant and efficient, it isn't optimal.
Let S(n) be the worst cost to sort n elements. Although we don't know S
we know that it must satisfy an infinite number of inequalities. For exam-
ple, it must be that S(n + 1) < S(n) + [lg(n + 1)], otherwise it would be
cheaper to sort n + 1 elements by sorting n, then binary inserting one more
element. Similarly, for all n and m we must have that

S(n + m) _ S(n) + S(m) + M(m, n)

We can beat merge insert sort by splitting the input, sorting the pieces, then
merging the pieces. The smallest known n for which this works is forty-
seven, and the input is split into sublists of five and forty-two elements.
This scheme will beat merge insert sort only for certain n; so far merge
insert sort is unbeaten when n is near one-third of a power of two.

But even if we have an optimal algorithm to sort two sublists of k and
n - k elements for every k > 0, and an optimal algorithm to merge them,
we do not necessarily have an optimal algorithm to sort n elements. When
we recurse we may do unnecessary work that gets thrown away when we
"marry" the two pieces. (Recall the problems with using divide and con-
quer to find the largest and second largest in chapter three). Thus we
cannot guarantee to sort optimally by optimally sorting two sublists and
optimally merging them. Of course we can always find an optimal sort for
each n separately by testing all possible comparison sequences to find the
shortest one that will sort that number of elements. Then we can imag-
ine building an "optimal sort algorithm" by concatenating all of these spe-
cial purpose algorithms and continually adding new special purpose opti-
mal sorts for particular ns not yet covered. The first thing this 'algorithm"
would do is check the value of n and, depending on that value, branch
to the appropriate special purpose sort. Of course such an 'algorithm"
may grow to be infinitely long, stretching both the meaning of the word
'ýalgorithm" and our credulity. It may well be that there is no optimal sort
algorithm of bounded length.

Poset Production

The sorting problem is to find the worst cost of building the poset consist-
ing of a chain of elements starting from n singletons. It is a special case
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of the partition problem discussed in the previous chapter. We know even
less about the worst cost of building an arbitrary poset starting from n sin-
gletons. Figure 4.15 shows the reduced posets producible in five or less
comparisons (ignoring duals). A reduced poset is a poset with no sin-
gletons (adding singletons cannot increase the cost). Table 4.16 lists the
numbers of reduced posets that cost less than six comparisons, together
with lower bounds for the numbers of posets costing six comparisons.

i :
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Figure 4.15 Posets producible in five comparisons (ignoring duals)

This is a frighteningly difficult problem; even the simplest assumptions
about poset cost are suspect. For example, although adding a singleton
to a poset cannot increase its cost, it can decrease it! Further, producing
two copies of a poset simultaneously can cost less than producing each
separately!
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Number of Elements

2 3 4 5 6 7 8 9 10 11 12

1 1 1
c 2 2 1 3
o3 1 5 2 1 9
s4 4 14 8 2 1 29

t5 1 15 41 24 8 2 1 92

6 11 >61 >124 >82 >28 8 2 1 Ž317

1 3 11 47 255 1727 14954

Figure 4.16 Number of reduced posets of various costs

4.9 Changing the Model
As far as the laws of mathematics refer to
reality, they are not certain; and as far as

they are certain, they do not refer to reality.

Albert Einstein, quoted in Fritjof Capra,
The Tao of Physics

So far we've pretended that we don't know anything about the input
except that it is orderable. But this is disingenuous; in practice, we often
know a lot about the input and we can use that knowledge to build faster
algorithms. In particular, the input is usually a set of numbers, or it can be
easily transformed into a set of numbers. And computers are very good
with numbers.

Distribute Sorts

If we know that the input is a list of numbers from a known range then
we can sort in linear worst cost using a distribute sort.

Consider sorting a deck of cards. One way is to divide the pack into
aces, kings, queens, and so forth, then sort each group of four cards.
The first division takes only one pass since we know that there will only
be thirteen kinds of cards, and we can put each card in one of thirteen
separate bins. If we assume that we can tell in constant time what kind
a particular card is then this pass takes linear time. Alternately, we could
divide the pack into its four suits: hearts, diamonds, clubs, and spades,
then sort the cards in each suit. Again the first division takes only one
pass. In both cases, once we have completed the first phase the second
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phase does not disturb the order; once we've divided the pack into suits,
ordering each suit does not remix the suits. The key point is that we know
how many different kinds of cards there will be before the sort, and can
plan accordingly.

aFuse Will both algorithms work if we have some number of cards from two
packs? Will both algorithms work if we have some number of cards from
an unknown number of packs?

Now suppose we have n integers, each with at most k digits. The
two ways of card sorting suggest two ways of sorting the numbers. We
could sort the integers on the most significant (leftmost) digit, then sort
all numbers with the same leftmost digit on their second most significant
digit, and so on. Or we could sort the integers on the least significant
(rightmost) digit, then sort all numbers with the same rightmost digit on
their second least significant digit, and so on. Do these two sorts cost the
same?

Surprisingly, when sorting numbers it's better to sort from least to most
significant digit. This distribute sort is called radix sort. See algorithm 4.11.
This algorithm uses a lot of storage, but we can reduce it by using linked
lists (see chapter two, page 129).

RADDC SORT (List, lower, upper, digits)
{ Sort the integers List[lower..upper] in increasing order.
Each integer is a decimal number in the range 0.1 0 digits
Use lists Sublist[i] (digits > i > 1) as temporary storage.
upper > lower > 0; digits > 0. }

for i from 1 to digits
make Sublist[i] empty

for i from digits downto 1
for next from lower to upper

k +- i"h digit of List[next]
add List[next] to Sublist[k]

make List empty
for j from 1 to digits

add Sublist[j] to List

Algorithm 4.11
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Note that radix sort will not work unless the numbers are in a fixed
range 0 to m. If k is the largest number of digits then radix sort costs
0 ((n + m) k). This is usually described as a linear time algorithm because k
is fixed, but note the hidden log factor; k must be at least logb n, where b
is the base of the numbers.

4.10 Coda-Sorting Out Sorting

It is an error to believe that rigor in proof is an enemy
of simplicity. On the contrary we find it confirmed by

numerous examples that the rigorous method is at the same
time the simpler and the more easily comprehended. The

very effort for rigor forces us to find out simpler
methods of proof.

David Hilbert, "Mathematical Problems,"

Bulletin of the American Mathematical Society, 8, 441

Why study sorting in such detail? The version of the general structuring
problem we've studied is simple but important. Sorting is a basic step in
many algorithms; it is estimated that about one-quarter of all computer time
is spent sorting.

As we have seen, a select sort is to an insert sort as a split sort is to a
merge sort. Linear insert sort is just merge sort with only one element in
one part; linear select sort is just quick sort with only one element in one
part. All sorting algorithms presented in this chapter are variations of the
same basic strategy: split the list into parts, sort each part, and merge the
parts. Is there a better way?

Why bother trying to find the best possible sort? Obviously optimal sort-
ing is not practical. We investigate it mostly because it would be interesting
to know the minimum possible number of comparisons necessary to sort.
Perhaps if we ever find out we will learn something important about algo-
rithms. Probably though we will solve the problem only after we learn
something important about algorithms!

A good theory should be proscriptive, prescriptive, and prospective; it
should tell us what cannot work, what has worked, and what may work.
Theory is for designers and artisans, not mechanics. The two prongs of
attack on the problem of understanding the universe are: the eminently
practical versus the completely theoretical, and there is danger for us if we
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ignore either one for too long. Theoretical doesn't necessarily mean use-
less, but practical doesn't necessarily mean useful. Goethe said that what
we do not understand we do not possess. The world is not as understand-
able as science would have us believe, but without science the world is
not understandable at all. Science costs, but we have no better tool.

This is the end of our three treks through the provinces dominated by
comparisons. Everywhere in these provinces we saw well-defined prob-
lems and clear-cut solutions with near-optimal performances; the roads are
well-tended and well-travelled. In part two we strike out into stranger and
more difficult territory. In the next chapter, the first chapter of part two,
we continue with our structuring problem, but expand it a great deal to
capture something of the complexity and dynamism of large applications.

Endnotes

Computational Ideas
Comparison-swap model, sorting, balanced run strategy, heaps, informa-
tion lower bound, entropy, space-time tradeoff, placeholder nodes, trickle-
down, linear merge, binary merge, bubble sort, swap sort, linear insert
sort, binary insert sort, linear select sort, heap sort, split sort, merge sort,
quick sort, radix sort, distribute sort, count sort, merge insert sort.

Mathematical Ideas
"* Using integrals to approximate sums of terms of an increasing func-

tion.

"* Using Stirling's approximation to estimate n!.

"* Bounding the number of swaps by counting inversions.

"* Viewing search, select, and sort problems as variations of search, and
using information theory to capture the informal notion of uncertainty
in search.

Definitions
"* complete binary tree: A complete binary tree is an ordered, rooted

binary tree in which every non-leaf node has two children and with
all its leaves on one level.

" left-complete binary tree: A left-complete binary tree is a complete

binary tree with zero or more of its rightmost leaves deleted.

" heap: A heap is a rooted binary tree such that the value of any node
is at least as large as the values of its children.
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"* on-line algorithm. An on-line algorithm can process its data as it
appears.

"* off-line algorithm: An off-line algorithm needs all its data before run-
ning.

"* stable sort: A stable sort preserves the relative order between two
elements whose keys have the same value.

Conventions
"* Llg =0 0

"* OlgO= 0

Constants
s lg e = 1.44269 50408 88963 40735 ..

Notation
"* M(m, n) = smallest number of comparisons needed to merge two

sorted lists of sizes n and m in the worst case.

"* S(n) = smallest number of comparisons needed to sort n things in
the worst case.

Tools
* A permutation of n orderable elements has at most (n) inversions and

the average number of inversions over all permutations is (n)/2.

"* A left-complete heap costs no more than 2n -4 comparisons to build.

"* For any non-decreasing function f

jf(x)dx _ f(i) > f(x)dx

"* Stirling's approximation: n! z 27/rn(n/e)n

I Jlnxdx =xlnx-x+r

( 1 )n+
1

•(n + 1)n+l P_- enn+l
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n

"* Given n probabilities pi, lg n > - ZPk lg Pk > 0
ji=

"* g(n) = LlgnJ + [lg(n - 1)]+{g(n - 2 lgn-l) + g(2Lilgnj -1) n < 3 x 2 [lgnj-l

g(2Llgnj -1) + g(n - 2 [lgnJ) n >3 x 2 [lgnJ-i1

=g(n) = 2n - 23(n) - v(n)

"• g(n)= 0 n <1I
g(n -1) +v(n) + (n -1) n > I

Sg(n) = 2n - 2,3(n) - v(n)

""0 n _< l
f fn f(n/2j)+f([n/21) + n-1 n > 1

Sf(n) = n lg n H - 2 4lgni + 1

"( 0 n-1

1n-1

f(n)= n-+n (f(i) + f(n- 1)) n > 1
i=O

f(n) f(n ) = 2(n + 1)H- 4n

0 n <_1
"n -fn i) n l

f n) n-+ n J•=o)n

* f(n) = 2(n + 1)Hn - 4n
n--1

"• nf(n) = n 2- n + 2 f(i) =:.f(n)=2(n +l)Hn -4n

i=0

"• nf(n) = (n + 1)f(n - 1) + 2n - 2 f(n) = 2(n + 1)Hn -4n

""~)=4(n - 1) n g(n) = 4Hn - 8n
gn=g(n -1) + n(n+l1) n > 1 n+l1

"• f(n) <5 2f(n/2) + 2Ig n ==:> f = 0(n)

* f(n) = n + min {f(i) + f(n - i)} ==> f(n) = n([lg n] + 1) - 2 [lgnl
0<i<n

0 n<2
* f(n)= 1 n = 2

{f(Ln)7  +gT)+Ln/2i] n > 2

Sf(n)=n[lg(3n)j-2n- 12[lg6n]
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f nm) n+m-1 n <2mf f([n/2J,m)+m n >2m

=== f(n, m) = m(1 + [lg(nim)j) + Ln/2Llg(nlm)]j -1

Notes
For a proof that the entropy function is the only uncertainty measure with
all the requisite properties of uncertainty see Mathematical Foundations of
Information Theory, A. I. Khinchin, Dover, 1957.

Heap sort is the invention of J. W. J. Williams, and it was subse-
quently improved by Robert Floyd. See "Algorithm 232, Heapsort," J. W.
J. Williams, Communications of the ACM, 6, 347-348, 1964, and "Algo-
rithm 245, Treesort," R. W. Floyd, Communications of the ACM, 7, 701,
1964. The clever observation about improving heap insertion on page 248
is from "Heaps On Heaps," Gaston H. Gonnet and J. Ian Munro, SIAM
Journal on Computing 15, 964-971, 1986.

Quick sort is the invention of Antony Hoare. See "Quicksort," C. A.
R. Hoare, Computer Journal, 5, 10-15, 1962. For an extensive theoretical
analysis see Quicksort, Robert Sedgewick, Garland, 1980. For an excel-
lent discussion of many of the practical details see Algorithms from P to
NP. Volume I, Design & Efficiency, Bernard Moret and Henry Shapiro, Ben-
jamin/Cummings, 1991.

The proof that linear merge is optimal whenever m < n < F(3m + 1)/2]
can be found in "On the Optimality of Linear Merge," Paul Stockmeyer and
F. Frances Yao, SIAM Journal on Computing 9, 85-90, 1980. For further
work on other optimality bounds see "Improving the Bounds on Optimal
Merging," C. Christen, Proceedings of the 1 9 th Annual Symposium on the
Foundations of Computer Science, IEEE Computer Society, 259-266, 1978.
See also "Merging of 4 or 5 Elements with n Elements," J~rgen Schulte
M6nting, Theoretical Computer Science, 14, 19-37, 1981.

Binary merging is the invention of Frank Hwang and Shen Lin; see "A
Simple Algorithm for Merging Two Disjoint Linearly-Ordered Sets," Frank
Hwang and Shen Lin, SIAM Journal on Computing 1, 31-39, 1972. Merge
insert sort used to be called Ford-Johnson sort, and it was first described
in "A Tournament Problem," Lester Ford and Selmer Johnson, American
Mathematical Monthly, 66, 387-389, 1959.

The breakthrough on optimal sorting that took twenty years to find is
the work of Glenn Manacher; it's described in "The Ford-Johnson Sort-
ing Algorithm is Not Optimal," Glenn Manacher, Journal of the ACM, 26,
434-440, 1979. See also "Further Results on Near-Optimal Sorting," Glenn
Manacher, Proceedings of the 17th Allerton Conference on Communication,
Control and Computing, 949-960, 1979, and "Significant Improvements to
the Ford-Johnson Algorithm for Sorting," T. D. Bui and Mai Thanh, BIT,
25, 70-75, 1985. There is much more known than can be fit into this tiny
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book; but even that is a mere spoonful of the ocean of sorting. You can
be sure that this isn't the end of the saga.

The most recent breakthrough on the arbitrary poset cost problem is "On
the Complexity of Partial Order Productions," Andrew Chi-Chih Yao, SIAM
Journal on Computing, 18, 679-689, 1989. Yao shows that the average cost
of a poset is of the same order as its worst cost and he gives a tight upper
bound on poset cost by showing that a poset with 1 linear extensions can
be produced in O(n + lg(n !/)) comparisons.

The comment that sorting accounts for one-quarter of all computer time
is from "The Input/Output Complexity of Sorting and Related Problems,"
Alok Aggarwal, and Jeffrey Scott Vitter, Communications of the ACM, 31,
1116-1127, 1988.

The second part of problem 9, page 294, is from "An Asymptotically
Optimal Algorithm for the Dutch National Flag Problem," James R. Bitner,
SIAM Journal on Computing, 11, 2, 243-262, 1982. Problem 11, page 294,
is from "Sorting and Searching in Multisets," J. Ian Munro and Philip M.
Spira, SIAM Journal on Computing 5, 1, 1-9, 1976. For further results
see "Determining the Mode," David Dobkin and J. Ian Munro, Theoretical
Computer Science, 12, 255-263, 1980.

Problem 13, page 294, is from "Optimal Sorting of Seven Element Sets,"
Lubor Kolldr, Mathematical Foundations of Computer Science, Proceed-
ings 1986, J. Gruska, B. Rovan, and J. Wiedermann (editors), 449-457,
Springer-Verlag, 1986. Problem 14, page 294, is from "On The Complex-
ity of Computations Under Varying Sets of Primitives," David Dobkin and
Richard Lipton, Journal of Computer and System Sciences, 18, 86-91, 1979.

Problem 18, page 295, was suggested by "Recursively Rotated Orders
and Implicit Data Structures: A Lower Bound," Greg Frederickson, Theoret-
ical Computer Science, 29, 75-85, 1985. For an amazing related result see
"Developing Implicit Data Structures," J. Ian Munro, Mathematical Foun-
dations of Computer Science, Proceedings 1986, J. Gruska, B. Rovan, and
J. Wiedermann (editors), 168-176, Springer-Verlag, 1986.

Jump insert sort, discussed in problem 19, page 296, is more usually
called shell sort after its inventor Donald Shell. For further references and
the best bounds known see "Tight Lower Bounds for Shellsort," Mark Allen
Weiss and Robert Sedgewick, Proceedings of the 1st Scandinavian Work-
shop on Algorithm Theory, R. Karlsson and A. Lingas (editors), 255-262,
Springer-Verlag, 1988.

Problem 24, page 297, is from "A Unified Lower Bound for Selection
and Set Partitioning Problems," David Kirkpatrick, Journal of the ACM, 28,
150-165, 1981. Problem 26, page 298, and problem 27, page 298, are from
"Heaps On Heaps," Gaston H. Gonnet and J. Ian Munro, SIAM Journal on
Computing, 15, 964-971, 1986.
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Further Reading
There are several good introductions to information theory. I particularly
recommend A Diary of Information Theory, Alfred Rlnyi, John Wiley &
Sons, 1984, and An Introduction to Information Theory, John R. Pierce,
Dover, second edition, 1980. The original papers are reproduced in The
Mathematical Theory of Communication, Claude E. Shannon and Warren
Weaver, University of Illinois Press, 1963.

For a general book on the relation of information to computer science,
see the non-technical and amusing Silicon Dreams: Information, Man, and
Machine, Robert W. Lucky, St. Martin's Press, 1989. For a collection of
recent papers on a few applications of information theory to contemporary
computer science see Complexity in Information Theory, Yaser S. Mostafa
(editor), Springer-Verlag, 1988. For a look at applications of information
theory in physical science today see Complexity, Entropy and the Physics
of Information, Wojciech H. Zurek (editor), Addison-Wesley, 1990.

The most comprehensive presentation of optimal sorting problems is
Combinatorial Search, Martin Aigner, Wiley-Teubner, 1988. Recent sort
algorithms adapt their behavior to their input using various measures of
disorder; for further references, several new algorithms, and their analy-
ses see Sorting and Measures of Disorder, Vladimir Estivill-Castro, doctoral
dissertation, Research Report CS-91-07, Department of Computer Science,
University of Waterloo, 1991. For recent advances in heap sorting see
Heaps, Svante Carlsson, doctoral dissertation, Department of Computer Sci-
ence, Lund University, 1986. For more background and analysis of quick
sort see Quicksort, Robert Sedgewick, Garland, 1980. For advanced anal-
ysis of distribute sorts and related algorithms see Lecture Notes on Bucket
Algorithms, Luc Devroye, Birkhauser, 1986. The Art of Computer Program-
ming: Volume 3, Sorting and Searching, Donald E. Knuth, Addison-Wesley,
1973, although dated, is the best overall reference for sorting.

Questions
I hear, I forget;

I see, I remember;
I do, I understand.

Chinese proverb

[Exercises]

1. Show that L3n/2j + 1 = f(3n + 1)/21.

2. (a) What sorts of things are we referring to when we talk about "the
model" under which some computation is performed?
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(b) Suggest three models that capture (in a reasonable way) the
complexity of doing a midterm examination. What things do
your models ignore? For example, one measure of complexity
might be the number of self-referential questions on the exam.
This ignores, among other things, the possibility that the exam
is written in a language you don't understand.

3. Define left-complete k-ary trees by analogy with left-complete binary
trees. Given an implicit implementation of a left-complete k-ary tree
in an array find an access algorithm that given any array location will
return the location of its parent and the location of the ith of its k
possible children. It may help to think of the locations in base k.

4. An anagram of a word is a word made up of the same letters as the
first word. For example, stop, tops, and pots are anagrams. This also
works for phrases: a mop acted wroth?, come adopt wrath?, thaw to
drop mace?, what actor moped?, and coadapt the worm?, are ana-
grams of compared to what?; flashy glamorisations, also hasty for-
malising, also flashy amortising, half simian's astrology, and stylish
anagram folios, are anagrams of analysis of algorithms.
You are given a list of words. Write an algorithm to test whether
two words are anagrams of each other in this list of words. Your
algorithm should be asymptotically optimal in the number of letter-
letter comparisons.

5. Rewrite LINEAR-MERGE SORT as an iterative algorithm.

6. Consider algorithm 4.12.

(a) Will this algorithm sort any list?

(b) What kind of algorithm is it in our classification of algorithms on
page 234?

(c) How many element-element comparisons does it do in the worst
case?

(d) How many element-element swaps does it do in the worst case?

(e) How many element-element comparisons does it do on average?
(You must make an assumption about the probabilities of possi-
ble inputs. )

(f) How many element-element swaps does it do on average?

(g) Find good lower bounds for the above four measures.

k i k+27. Show that 1 i-1- 2+

i=0 i1 2+
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SIMPLE-SORT (List, lower, upper)
{ Sort List[lower..upper] in increasing order.
upper > lower > 0. }

unsorted +- true
while unsorted

swaps +- 0
for index from lower to upper - 1

if List[index] > List[index + 1]
List[index] +-* List[index + 1]
swaps ,- swaps + 1

if swaps = 0 then unsorted +--false

Algorithm 4.12

8. Without using Euler's approximation show that

Inn + 1 > H, >_In(n + 1)

9. (a) Show that for i > 3

1 i-1 1

i+2 i(i+1) i+3

(b) Find a, b,and c such that for all i > c

1 i-2 1
i +a > i(i +1) i +b

0 n<_l
10. Show thatf(n) f(0n/2J)f(n/2)n-1 n > 1

f (n) = n[lgn] - 2 [lgn] + 1

11. In the following r and s are arbitrary constants.

(a) Given that

J x 2dx = 3 + r

without integrating show that

JvYdx 3 +2 s
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(b) Given that

f eXdx = ex + r

show that

f In xdx = x In x - x + s

12. Show that (n)k > (n) , ()k)

13. Show that

f(n)=n+ min{ilgi+(n-i)lg(n-i)}== fr nlgn
1<i<n

14. Use constructive induction to find f's growth rate if

f(n) = f(n/a) + f(n - n/a) + 0(n)

15. Find f's growth rate if
(a) f (n) < f (v-f) + ig vn-

(b) f(n) • vlif(v/-n)+ nlg2n- 2

16. HEAP SORT exploits the savings from finding the largest and second
largest simultaneously. Design and analyze a sort that exploits the
savings from finding the largest and smallest simultaneously. As with
HEAP-SORT, to do this efficiently you will need to design a new struc-
ture.

17. Algorithm 4.13 is a first cut at a recursive linear merge. The algo-
rithm can only use constant extra storage (not counting storage nec-
essary to support the recursion). Finish the algorithm (including
precondition and initialwork).

18. Algorithm 4.14 is an alternative to SPLIT (algorithm 3.7, page 193).

(a) What does this algorithm do when lower = upper?

(b) Is the output of algorithm 4.14 different from that of algo-
rithm 3.7?

(c) Show that algorithm 4.14 correctly splits List.

19. LINEARSELECT SORT finds the next largest of the remaining elements
without exploiting any information found in previous scans.

(a) Explain why it is better in the worst case to break the list into
two, find the largest of each part, then find the overall largest.
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ZIPPER-MERGE (List, lower, mid, upper)
{ Merge List[lower.mid] and List[mid + 1..upper],
where each is sorted in increasing order.
Use only constant extra storage (not counting recursion support).
precondition. }

initialwork

if List[lower] > List[mid + 1]
List[lower] +-* List[mid + 1]

ZIPPER-MERGE (List, lower + 1, mid, upper)

Algorithm 4.13

SPLIT (List, lower, upper,pivotiloc)
{ Split List[lower.upper] into two parts: those less than
List[pivot-loc] on the left and those greater than it on the right.
Return the pivot's new position.
upper > pivot loc > lower > 0. }

pivot 4- List[pivot-loc]
List[lower] +-+ List[pivot-loc]
low +- lower ; high +- upper
while high > low

while upper > low and pivot > List[low]
low <- low + 1

while high >_ lower and List[high] > pivot
high - high - 1

if high > low then List[low] +-+ List[high]
pivot loc +- high ; List[lower] +-* List[pivot-loc]
return pivotiloc

Algorithm 4.14

(b) Quadratic select sort divides the list into v/~n pieces, finds the
largest of each piece, then finds the overall largest. Explain why
this improves the worst case.

20. To win a bet you want to find all words in an on-line dictionary that
remain words when you append "s" and "ss." Eight such words are:
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bra, care, deadline, marque, needle, ogre, posse, and prince. Suppose
the dictionary is in sorted order. What is the most efficient way to
find all such words?

21. Given an n x m array of numbers where each of the n rows of m
numbers are sorted in increasing order from left to right.

(a) Show that if we sort the numbers in each column in increasing
order from top to bottom then the rows are still sorted in increas-
ing order from left to right.

(b) Will the rows still be in increasing order from left to right if we
sort the columns in decreasing order from top to bottom?

22. Find the growth rate of the worst cost of a merge sort that splits the
problem into three parts, solves the subproblems, then uses linear
merge to recombine them.

23. While considering various ways to reduce a problem using divide and
conquer you examine the following general recurrence:

Sa n=1
bf(n/c) +dn n > 1

(a) Solve the recurrence by assuming that n is a power of c.

(b) Why is it reasonable to assume that n is a power of c?

(c) What happens if b = c?

(d) When is f(n) = 0(n 2 )?

Problems]

1. Find f's growth rate if f(n) <_ f(2 V'f- ) + 1.

2. Consider the following game: Someone tells you a sequence of n
decimal digits (0 to 9) and you are to produce the smallest n-digit
number you can. You are allowed to choose the position of each
digit on hearing it, but after choosing a position for the ith digit you
cannot move it after hearing the (i + 1))th.

(a) What is your average score if you select each digit's position at
random from the remaining positions?

(b) What strategy produces the smallest average score?



Questions 293

3. We wish to sort a bag of n nuts and n bolts by size in the dark. We
can compare the sizes of a nut and a bolt by attempting to screw one
into the other. This operation tells us that either the nut is bigger
than the bolt; the bolt is bigger than the nut; or they are the same
size (and so fit together). Because it is dark we are not allowed to
compare nuts directly or bolts directly.
How many fitting operations do we need to sort the nuts and bolts
in the worst case?

4. You are given a pile of n coins and you may flip the first m < n
coins as a group.

(a) What is the least number of flips needed to make sure that the
coins are all heads up in the worst case?

(b) What is the least average number of flips needed to make sure
that the coins are all heads up if each arrangement of heads and
tails occurs with uniform probability?

(c) What are the worst and average costs if the cost of each flip is
proportional to the number of coins flipped?

5. What is the average number of comparisons of LINEAR-SELECTSORT?

6. We have seen that

nf(n) = (n+l)f(n-1)+n f f=0(nlgn)
and

n 2f(n) = (n 2 
- 1)f(n - 1) + n 2  = f = O(n)

(a) Show that
i. (n - 1)f(n) = (n + 1)f(n - 1) =f = 0(n)

ii. n 2f(n) = (n 2 - 1)f(n - 1) + n =f = 0(lg n)

(b) Find f's growth rate if

i. Okf(n) = (nk - 1)f(n - 1) + n1

ii. nkf(n) = (nk + 1)f(n - 1) + n1

7. Show that

LIg nj [Ig nj

(a) ' (n mod 2i) = n = 1 2i(Ln/2zj mod 2)
i=O

n

(b) i mod 2 = [n/21
i=1
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n

(c) Zi(i mod 2) = Fn/2] 2

i=1

(d) ELi/2](i mod 2) = In/21

i=1

n n

8. Given that -Li/2] = Ln2/4], show that Z[i/21 = [n(n + 2)/41.
i=1 i=1

9. We are given a sequence of n pebbles colored red, white, or blue,
and we have to arrange them so that all red pebbles precede all white
pebbles, and all white pebbles precede all blue pebbles. We are
allowed two operations: color(i), which tells us the color of the ith

pebble, and swap(i, j), which swaps the pth and jth pebbles.

(a) Find an algorithm that minimizes the number of swaps if we are
only allowed to test each pebble's color once. This is the Dutch
national flag problem.

(b) Find an algorithm that uses the least number of swaps on average
where each of the 3fn pebble colorings are equally likely. Solve
the problem using only a constant amount of extra space.

/'2n' 22n

10. Show that 2) 2 2n(1 + O(1/n)).

11. Throughout this chapter we have assumed that the input does not
have duplicated elements. Show that if the input has duplicates of
multiplicities ml, M 2 , ... , mk then sorting costs

k

0(nlgn - > milgmi + n)
i=1

12. Show that
(a) M(m,n) < M(m,n + 1).
(b) M(m + k,n) •_ M(m,n) + M(k,n).
(c) M(m,n) < M(m, Ln/21) + m.

13. Show that the information lower bound on the average cost of sorting
is achievable for n < 6 but not for n = 7.
Show that any average case optimal sorting algorithm sorting seven
elements needs at least 62416/(7!) comparisons.

14. The element uniqueness problem is to decide whether any two of
n orderable elements are equal using only element-element compar-
isons. Show that the element uniqueness problem requires Q(n lg n)
comparisons in the worst case.
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15. (a) What is the smallest number of comparisons to decide whether
one array is a permutation of another?

(b) Can this bound be used to give a lower bound on sorting?

16. You have two arrays. The elements of each separate array are dis-
tinct. Viewing them as clockwise rings where the first location fol-
lows the last, what is the smallest number of comparisons needed to
tell whether one array is a rotation of the other if

(a) You know that they are rotations of each other.

(b) You don't know that they are rotations of each other.

17. Many things influence the choice of one algorithm over another. Sup-
pose you have an array of n elements, and you wish to rotate the list
in a different sense to the last question. You wish to move the first
i < n elements to the end of the array and the last n - i elements to
the front of the array while otherwise preserving the elements' order.
Design and analyze at least five algorithms to solve this problem. For
each algorithm, consider

"* The amount of space it uses.

"* The number of element shifts it does.

"* The number of function calls and the depth of recursion (if your
algorithm is recursive).

"* The order of accessing array elements. (For large arrays access-
ing widely separated elements might cause paging.)

"* How difficult it is to program.

"* How difficult it would be to understand someone else's program.

Of your algorithms, which would be the most useful in the widest
context? Is it optimal with respect to any of the above measures?

18. If a list is kept in an array and we have to insert and delete many
elements when we search for them then it is undesirable to maintain
sorted order. Let's keep the elements in sorted order but "forget"
where the list begins. As we insert and delete elements we allow the
list to rotate cyclically. From the beginning to some point, say i, we
have i elements in increasing order, then from the (i + 1)th to the
end we have n - i - 1 elements in increasing order, such that the nth
is no bigger than the first, but we don't know i.

(a) Show that we can find an element in a rotated list in at most
2Flg(n + 1)1 comparisons.
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(b) Show that we can improve this worst cost to flg(n + 1)] +
[ lgn[.

(c) Show that we require at least Ig n+ lv/n+o(vIg n) comparisons
in the worst case.

19. The trouble with local swap sorts is that they only reduce disorder
locally; they only compare neighboring elements. Instead we should
try to reduce disorder "in the large" before trying to reduce it "in the
small."
Every sort algorithm can be rewritten so that it sorts L[k], L[k + 1],
L[k+21], ... , L[k+L(n-k)/lJl], where n > I > k. Call this I-sorting
(1-sorting is then just normal sorting).
Now we can write a sort that first (n/10)-sorts then 1-sorts, say. The
two possible advantages of this sort are that after the (n/10)-sorting,
several well-separated elements are in order relative to each other and
their various contributions to the number of inversions are reduced.
So, perhaps, the list is much less disordered when we come to 1-sort.

(a) Show that for any k and m, if a list is k-sorted and we m-sort
then it is still k-sorted.

(b) Use this observation together with all integers of the form 2'3j <
n (where the increments diminish), to show that algorithm 4.15
sorts in O(n 1g2 n) in the worst case.

JUMPINSERT-SORT (List, lower, upper)
{ Sort List[lower..upper] in increasing order.
upper > lower > 0. }

Generate the list Jump[1..number]
for index, from number downto 1

for index2 from Jump[index1 ] + 1 to upper
save -- List[index2 ]
step -- index2 -Jump[indexi]
while step > 0 and List[step] > save

List[step +Jump[indexz]] -- List[step]
step -- step -Jump[index1 ]

List[step +Jump[index1]] ,- save

Algorithm 4.15
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20. Recall that /3(n) is the number of ones in the binary representation
of n and v(n) is the number of times two divides n. Show that

(a) /3(n) + 3(m) - /3(n + m) is the number of carries on adding n to
m in binary.

(b) /3(n) +/3(m) _>/3(n + m)

(c) /3(n - 1) =/3(n) + v(n) - 1
(d) O3(n) = O(n - 2Llgn]) +- 1

21. If f(1) = 1, show that

1 f(n) = f(n - 1) + v(n)

f(n) = f([n/2j) + Ln/2J

22. If f(1) = 1, show that

Jf(n) =f(n - 1) + 1

f(n) = n €==> f(n) = f([n/2J) + [n/21

f (n) =2f (Ln/2J) + n rood 2

23. (a) Show that the worst cost of fixing an n-node heap obeys the
recurrence

0 n_<l
f(n-1)+v(n)+v(n-1) n >1

where v(n) is the number of times two divides n.

(b) Show that f(n) = 2n - 23(n) - v(n), where 3(n) is the number
of ones in the binary representation of n.

(c) Show that for all n > 3, f(n) < 2n - 4

24. Show that
S~i--2 

n -- + 2]n

P(i - 1, 1, n - i) 1 j=0 g +
3n + i1 + 3 n > i n> -

2 2- 3
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25. If the elements we want to sort are long records we don't want to
move the records unless we have to. If we can use more storage, we
can maintain n pointers that we update after each comparison instead
of moving the compared elements.
Given an array of records and an array of pointers pointing to their
correct positions in sorted order, move the records into their sorted
positions in the least number of moves.

26. By building an adversary, or otherwise, show that in the worst
case inserting a new element into an n element heap can require
[lg lg(n + 2)] - 2 comparisons.

27. Show that we can extract the root of an n element heap and reorder
the heap in no more than Ig n + lg* n + 0(1) comparisons. (lg* n is
the iterated logarithm function, defined in chapter one, page 51.)

28. By dividing by n we can transform the recurrence

(1 n<1
f(n) n --- f(g(n)) + n n > 1

Sg(n)

to the recurrence

h(n)n<1 "" h(g(n)) + 1 n > 1

h(n) counts the number of levels of recursion of f(n).
Define F (i, k) as follows

Sfk i = 0
F(ik) {2 F(i-l,k) i > 0

and define the iterated log function as follows

li)n n 1) i = 0{ [lg(lg(i- n)J i > 0

Let lg* n be the smallest i such that lg(l) n < 2.

(a) Show that lg(i+l) n = lg() ([lg nJ).

(b) Show that if i < lg* n and n > 2 then F(i,lg(i) n) <_ n.
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(c) Consider the following five recurrences. For each of the recur-
rences, f,(n) = 1 when n < 1. Assume that the recurrences use
only integer operations; that is, take a/b, v-d, and Iga as [a/bj,
[LI-aJ, and Llga], respectively.

fo(n) = fo(n - 1) + n

fi(n) = 2f,(n/2) + n

f2(n) = V/nf2(v/n) + n
J•(n) - 2 J3a + nf3(n) - f3(2V'g)±

f.(n) = ln f.(lg n) + n

The transform of each recurrence is: ho(n) = ho((lg(°) n) - 1) + 1

hi(n) = hi( 2 (lg0) n)-1) + 1

h 2(n) = h2 (2 2 (,g) ,)-1) + 1

h 3(n) = h3(222 )-1 + 1

h,(n) = h,([lgnJ) + 1

Rewrite the five recurrences using the function F and no explicit
exponentiation. (Hint for the last recurrence: The argument of
h. on the right-hand side needs only to be E(Llg nJ).)

(d) Show that if lg* n > i > 0 and n > 2 then

hi(n) = { 1 g n < 1
hi(F(i,lg n-1))+1n > 1

Shi(n) = O(i + lg(i) n)

[Researchl

1. Show that there is no bounded length optimal sorting algorithm.
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2. What is the best way to search for a phrase in a phrase dictionary?
Assume that phrases are ordered alphabetically in the dictionary and
that the only operations allowed on phrases are comparisons of the
letters making up the phrases. Suppose we are searching for the
phrase "the moon is a balloon." We can use binary search with the
whole phrase but there may be better ways to do the search in less
comparisons, since each such "comparison" seems to force twenty-
one letter-letter comparisons. Such a search takes up to n rlg(m + 1)1
letter-letter comparisons if the phrase is n letters long and the dictio-
nary is m phrases long.

(a) Find a better algorithm or show that n lg m is asymptotically opti-
mal.

(b) Generalize your algorithm to match phrases that can occur as
parts of other phrases.

3. Suppose we "sort" in such a way that for any element in the list we
could guarantee that it was no more than c positions away from its
correct location. Call this c-sorting. If c = 0 then we have the normal
definition of sorting.
Does c-sorting take appreciably less time than Q2(n lg n) in the worst
case?
How can we search a c-sorted list optimally in the worst case?
We can check that a list is sorted in n - 1 comparisons. How many
comparisons are necessary to check that a list is c-sorted? How about
a probabilistic check? Is it worthwhile to include such a check before
attempting any sorting?

4. Find a sequence of shift values to sort in O(n lg n) using

JUMP-INSERTSORT or show that none is possible.

5. What is the exact cost to create a heap?

6. (a) Find M(m, n) or show that it has no universal expression.

(b) Find S(n) or show that it has no universal expression.

(c) How many comparisons does it cost to build an arbitrary poset
on n elements in the worst case starting from n singletons?
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1 1 3 i i4 5 6 7

7. Across: Down:
1 Naive organizer effervesces before dinner1Wepnfiu.(4

end. (6,4) 2 Stop oxygen rhythm with a pressure gauge.
6 Sound the rebuke? That's not hip. (3) (9)
9 Join and put power in me. (5) 3 Example found in deception? There's loyalty

10 Sounds like Algernon cultivates a seaweed for you! (5)
producer. (5,4) 4 Misfire at a slip in space. (7)

11 Bad aim, peril for a regal moth. (8) 5 In simple language, awkwardly carry back in
12 Losing its head sounds incorrect, but it's the rear. (7)

piercing. (5 6 Instrument of horrible pain with taboo
14 Best choose before mail gets sorted. (7)enig(5
16 Spanish nobelist embraced by smooch oaf. 7Endins rg. c (5) cm o y.(0

(5) 8 Pile order gives odd sop taken to beant.
18 Accomplice backtracks about Northern (4,4)

trap. (7) 13 Establishes order without end. Come on
20 Beat, I rest at theater, man. (7) after Padis. (10)
21 Conrad ardently contains an invisible 15 Fierce baboon or an emergency routine for

warning. (5) men only! (8)
23 Occasional sometimes goes with table. (8) 17 Quick! Look up! Technique has headless
26 It is said some may shun addition. (9) thing for company. (7)
27 Greek's maybe, or maybe Magis on the 19 A snake or lizard may possibly rile pet. (7)

move. (5) 20 Sort sounds like a series of mountains. (7)
28 Certainly sounds like any holds on nothing! 22 Lacking treats, demonstrate evil spirit. (5)

(4) 24 Verdant desert island? Also, a sister holds
29 Atavisms about accounts. (10) the answer. (5)

25 The academic goal is a high place. (4)



PART TWO

Sea Change

Nothing of him doth fade,
But doth suffer a sea-change

Into something rich and strange.

William Shakespeare, The Tempest, , 1/

N OW THAT we've got the basics we can look at more
complicated, and more realistic, problems. The

province of comparison-oriented problems that we've just
left is only a microcosm of the continent of analysis; it's
important because problems there are clear-cut so it hap-
pens to be well explored. Now we're going out into
wilder domains. Our goal in subsequent chapters is to
learn how to deal with complexity. In chapter five we
look at the problem of solving problems with a complex
system of related parts. In chapter six we examine the
problem of solving problems on numbers. And in chap-
ter seven we look back the way we've come and look
forward to future exploration.



GRAPHS

Banach once told me, "Good
mathematicians see analogies between

theorems or theories, the very best
ones see analogies between analogies."

Stanis law Ulam, Adventures of a Mathematician

rn N THIS chapter we explore graphs. A graph is a collection of rela-
tionships between things. Graphs help us solve problems involving

complex systems since we can describe many such systems in terms of
the relationships between their parts. It's often easier to see what makes
a problem difficult once the problem has been sufficiently abstracted, and
this sometimes makes the problem easier to solve.

A graph is a mapping from a collection of nodes to itself. Two nodes
are related if there is a link, or edge, between them. We won't consider
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relations where one node may be related to itself, or where two nodes
can be related more than once. Graphs without these complications are
called simple graphs, all of our graphs will be simple. Since only relations
between nodes matter, we can think of nodes as beads and edges as strings
joining them; so although the two figures in figure 5.1 look different, they
are the same graph. There is a way to map each node in the first graph to
a node in the second graph so that two nodes are related in the first graph
if and only if they are related in the second graph. Such graphs are called
isomorphic. Figure 5.2 shows all non-isomorphic graphs with up to three
nodes. Unlike posets, relationships captured by graphs do not have to be
order relations.

Figure 5.1 Two isomorphic graphs

Ps Show that if we label the nodes in figure 5.1 then there are eight mappings
between the two graphs that preserve node relations.

0

0

0 I

0 0 1 0 FL
0 1

Figure 5.2 All graphs with up to three nodes

Stating a problem in terms of graphs often makes the problem easier.
First, graphs encourage us to discard irrelevant detail-clearing away the
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undergrowth simplifies the problem. Second, the problem may be a dis-
guised form of an already solved graph problem-in which case we can use
the known solution. Alternately, we may find that the problem is equiv-
alent to a hard graph problem-in which case we know we're in for a
fight. Looking at a problem as a graph problem encourages us to ignore
detail, and that makes problem abstraction and problem classification eas-
ier. Graphs encourage us to squint.

For example, the road system and the phone system look very different,
but their main purpose is to get things from one place to another. We can
model both as graphs if we think of a phone call as being the same as a
car: their primary function is to get from one place to another.

Let's model places as nodes and connections between places as edges
between the nodes. To allow for one-way streets we can put directions
on the edges of the graph, making a directed graph. To allow for traffic
limitations on streets and bridges, we can put numbers on a graph's edges,
making a network.

When a bridge goes out, or a road is blocked, a traffic engineer wants
to know if she still can route traffic to reach Manhattan. When a Canadian
trunk line goes out, or a communications satellite malfunctions, a commu-
nications engineer wants to know if he still can route calls to reach Alaska.
Both engineers want to know whether their networks are still connected.
The traffic engineer wants to know the maximum traffic a network of roads
can bear. The communications engineer wants to know how many calls
can be placed at the same time. Both engineers want to find their net-
work's maximum flow. When it rains, traffic flows change; when there is
a solar flare, information flows change. Both engineers want to know their
network's cheapest paths.

Since we can think of most systems as a collection of things with some
spatial or temporal relationship between them, we can use graphs to model
all sorts of complex systems. We can use them to model electrical circuits,
communications networks, transportation networks, large molecules, large
programs, economic systems, and industrial processes. Further, because of
their generality, their applications are as diverse as their application areas:
we can use them for task sequencing, routing design, chip layout, trans-
portation analysis, and flow control.

We have already seen several kinds of graphs. A rooted binary tree is
a graph with five properties: it is directed; it is connected; no node has
more than two children; no node has more than one parent; and it has
one node with no parent (the root). A singly linked list is also a graph;
it's a rooted tree whose nodes have at most one child each. A poset is a
graph too. It too is directed, but it may have several roots and each node
may have many children.



308 5 GRAPHS

Further, we can turn almost any problem into a graph problem. For
example, here's one way to think of the towers of Hanoi problem as a
graph problem: Think of it as a state-space problem (as in the max-min
problem of chapter three), and describe a position by the number of disks
on the three pegs. The problem is to transform (n, 0, 0) into (0, 0, n) in the
smallest number of moves. This is equivalent to finding a particular kind
of path in a particular kind of graph.

Again, consider a salesman who has to visit each of n cities and return
to his starting city without visiting any other city twice. This problem can
be turned into the problem of finding a path through a graph whose nodes
are cities and whose edges are roads (or airline routes). Such a path is
called a hamiltonian cycle after the nineteenth-century Irish mathematician
William Hamilton, who designed a game around the problem in 1857. A
graph that has a hamiltonian cycle is called hamiltonian. (See figure 5.3. )
If we now add costs to the edges of the graph-making it a network-then
finding a cheapest hamiltonian cycle of the network is called the travelling
salesman problem. As we shall discover in the last chapter, this problem is
probably quite hard;1 currently, solutions for only a hundred cities can take
millions of years! So if your problem on communications networks, chem-
ical isomers, or integrated circuits, is equivalent to the travelling salesman
problem, then you know you're in trouble.

0-0 NI
Figure 5.3 Two hamiltonian (top) and two non-hamiltonian graphs (bottom)

In contrast to the hamiltonian cycle problem, the first ever graph prob-
lem was also the problem of finding a particular kind of path; this time the
path had to pass through every edge once before returning to its start. The
problem has become known as the K6nigsberg bridges problem, after the
city it was intended for. In 1736, seventy years before Hamilton's birth,
Leonhard Euler solved this problem by showing that there was a simple

'Not to keep you in suspense any longer, both the hamiltonian cycle problem and the trav-

elling salesman problem are AKP-complete.
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test for any graph, and if the graph passed the test then it had at least
one appropriate path, called an eulerian cycle, otherwise it did not. That
test leads to a simple algorithm to find such cycles. So whereas finding
hamiltonian cycles appears to be very hard, finding eulerian cycles is easy.

Graph problems are different from previous problems since there are
now two input variables-the number of nodes (n), and the number of
links (l). In this chapter we will take n as the number of nodes and 1
as the number of links, or edges.

5.1 Structures

It is a profoundly erroneous truism... that we
should cultivate the habit of thinking of what

we are doing. The precise opposite is the case.
Civilization advances by extending the number
of important operations which we can perform

without thinking about them.

Alfred North Whitehead,

Introduction to Mathematics

Before we design our graph algorithms we need to design some structures
to hold our data. Our data is now more structured than the simple lists of
chapters two, three, and four. Three things drive us to consider structures
more complicated than lists.

First, so far we've concentrated on reducing the number of times we do
one operation (an addition, an assignment, a comparison, a swap). But
in this chapter we will build structures to reduce the overall work done
when interrelated operations manipulate data; usually no single operation
accurately reflects the overall work done. 2

Second, so far we've assumed that our data is fixed, but more often our
data is dynamic, it changes over time. We must now widen our model to
include space as well as time; our model of cost should now include the
structure's size, since with dynamic data it can grow and shrink. Let's take
the number of elements in the structure as a measure of its size.

Third, so far we've implicitly assumed that we can analyze each problem
instance independently of any others. This isn't realistic when we have a
long sequence of actions and a set of operations to realize them, some of

2"There is more to life than increasing its speed." Mohandas K. Gandhi.
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which may not be used in any one sequence. The worst cost of any one
operation is no longer helpful; it's better to average over a representative
sequence of operations. Instead of worrying only about the work done in a
snapshot, we now have to average over the time the structure will be alive.

Let's assume that cost is proportional to the number of times any ele-
ment in the structure is touched, used, or accessed over a sequence of
operations. This is the touch-based model. Further, let's add one more
dimension to the five dimensions of analysis we developed in chapter one
(page 24); we now expand the input to include sequences of operations.
Each operation separately has a worst cost, an average cost, and so on,
and now we modify our cost function to reflect the cost of a sequence of
operations. The best way to do that is to shift attention from the algorithm
to the structure.

It often happens in complex algorithms that choosing a good structure
clears some of the murkiness and makes it easier to see that the algorithm
is correct. As applications become more complex, algorithm correctness
grows in importance. Paradoxically, correctness is more important in com-
puter science than even in mathematics; most theorems are used less than
a million times a year, but many programs may be used a million times a
day. In contrast to previous chapters, in this chapter whether an algorithm
is correct will be a major issue.

A well-chosen structure lets us separate concerns so that neither its
implementer nor its user has to worry about many things at once. This
idea of data abstraction forces us to identify exactly what we can do to
the data. It hides the data format from users of the structure (including
the original programmer); it encourages application program modularity
and simplicity; and it lets us change the implementation without changing
application programs. These are powerful program simplifiers. Further, a
well-chosen structure can reduce an algorithm's storage cost and overhead.
Finally, a well-chosen structure makes algorithms easier to analyze.

Structures as Restaurants

Structures are like restaurants. If we think of manipulating data as shaping
or cooking food, then in past chapters we cooked at home; now, because
of the complexity of the meals, we're going to eat out. Whereas before we
cooked everything ourselves, now we take the restauranteur's, the chef's,
and the customer's, point of view. Each restaurant serves some collection
of dishes. Each dish is the result of an operation on food (data). Some
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restaurants, like fast food chains, are strongly typed; we can't get any vari-
ation on the menu-the most we can do is discard things already given.
Others, the really expensive ones, allow us to tell the chef exactly how to
do our filet mignon. The restaurant is the structure, the chef is the imple-
mentation, the menu is the set of operations supported, the customer is
the application, and the kitchen door is the information hider.

In previous chapters we didn't have a kitchen door hiding the imple-
mentation. Because we were the chefs, we were always in the kitchen
and we paid obsessive attention to perfecting each dish. We built every-
thing from scratch for each new dish, sometimes even going so far as the
analogue of grinding our own flour. Until recently, programming didn't
have a kitchen door either. But now we realize that with enormously com-
plex applications, it's often better to package generic meals so that we can
take them for granted. A further advantage is that packaging allows levels
of restaurants, where, like cafeterias, one restaurant orders submeals from
other restaurants then further packages them. For example, a heap is a
structure, but heaps themselves can be used as an implementation of more
general structures called priority queues. Further, heaps can themselves be
implemented implicitly in an array, or with explicit pointers, or with arrays
to simulate pointers.

IF STRUCTURES WERE RESTURAUNTS,
YOUR CODE WOULD BE A LEMONADE STANDj

In the past, if we wanted the best steak we surveyed all valid chefs and
chose the one that did steak best (the model defines which chefs were
valid and it defines what best means). But a meal consists of more than a
steak, and the epicure will choose a restaurant that may not have the best
steak, but which has good salads too. Also, in times past we were think-
ing of ourselves only as chefs, now we have to worry about the chef, the
customer, and the restauranteur. Their interests do not always coincide.
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For example, restauranteurs want to maximize their performance over a
long sequence of customers. This shows how much more complicated
our problems have become. The restauranteur must worry not only about
the demands of one particular customer, but the demands of all customers
where some customers may show up more often than others. We have
to expand our notion of problem instance to encompass sequences of
problem instances.

We can think of many problems in terms of operations on sets of ele-
ments. Given an element x and a structure S, tables 5.1 and 5.2 list some
of the things we might want to do. If these operations are common, it
would be foolish to rewrite them every time we write a new program using
some or all of them. It's better to write and debug them once then forget
about them. Learning judo, or any other martial art, is like slowly program-
ming a subconscious computer that will control you in combat conditions.
If you try to keep conscious control of all necessary subroutines, you will
never master the complexity of movement needed for fast combat.

CREATE (S) Make an empty structure and call it S
DESTROY(S) Remove S

COPY (S) Make a copy of S

UNION (S1, S2) Join the structures S1 and S2

INSERT( X, S ) Add x to S

DELETE ( X, S) Remove x from S

FIND(X,S) Find x, if it is in S

EMPTY (S) Test whether S is empty
FuLL (S) Test whether S is full

FINDSIZE (S) Find the number of elements in S

FIND STRUCTURE (X) Find the structure to which x belongs

Table 5.1 Some general structure operations

Structures aren't interesting if the operations are independent of each
other. If they're independent we can improve each operation without wor-
rying about any others, as we have done in previous chapters. So let's
focus on structures where two or more operations are interrelated. For
example, Insert and Delete have opposite effects on Finds; the more we
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Operations assuming timed elements
FINDYOUNGEST(S) Find the element earliest inserted in S

FIND-OLDEST(S) Find the element last inserted in S
FIND-TIME ( i, S) Find the ith inserted element in S

FIND AGE (X, S) Find the time x was inserted in S

FINDBEFORE( X, S) Find the element in S inserted before x

FINDAFTER( X, S) Find the element in S inserted after x

GET-YOUNGEST (S) Delete and return the earliest element in S

GET OLDEST(S) Delete and return the latest element in S

Operations assuming linear structures

INSERT-BEFORE ( X, i, S) Add x before the ith element in S

INSERT-AFTER( X, i, ) Add x after the ith element in S

FIND FIRST(S) Find the first element in S

FIND LAST (S) Find the last element in S

FIND-POSITION(i, S) Find the ith element in S

FIND-PLACE (X, S) Find the position number of x in S

FIND-PREDECESSOR(X, S) Find the element in S preceding x

FIND-SUCCESSOR( X, S) Find the element in S following x
GET FIRST(S) Delete and return the first element in S

GET-LAST (S) Delete and return the last element in S

Operations assuming orderable elements

SPLIT( X, S) Partition S into two disjoint structures
with all elements less than x in one structure

FIND-NEAREST( X, S) Find the element in S closest to x in value

FIND-SMALLEST(S) Find the smallest element in S

FIND LARGEST(S) Find the largest element in S

FIND-ORDER( i, S) Find the il'h largest element in S
FIND-RANK(X,S) Find x's rank in S

FIND SMALLER ( X, S) Find the largest element in S smaller than x

FIND-LARGER ( x, S) Find the smallest element in S larger than x

GETSMALLEST(S) Delete and return the smallest element in S

GETLARGEST(S) Delete and return the largest element in S

Table 5.2 Some special structure operations (for time, position, or rank)
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Delete, the cheaper Find gets, the more we Insert, the dearer Find gets.3

As usual, we have to compromise. No operation should be "too easy;" if
something is very easy, something else may be very hard.

Some operations in the tables are expressible as combinations of more
primitive operations in the table. Depending on the application, for effi-
ciency we may choose to implement these secondary operations directly
instead of composing two or more others.

For example, suppose we define a new operation on linear structures
called "Join" that takes two linear structures and concatenates the elements
of the second to the end of the first. We could implement Join (SI, S2) as
repeated calls to Get-First of S2, Find Place of the last element in SI, and
Insert After that position. (Then delete the first element of S2 .) That is,
repeated calls to the single command:

Insert After (Get-First (S 2 ), Find Place (Find-Last (Si), S1 ), SO)

However, if we expect to do many Joins then it's better to write a faster,
more direct, Join. On the other hand, if we also need "Reversejoin,"
which appends the reversed form of S2 to S1, then we may be better
off using variants of the first implementation for both operations since we
would have to change it only slightly to do both. As you can see, there
are many tradeoffs.

Ps What are some tradeoffs in implementing an operation to reverse the ele-
ments of a linear structure?

We have to distinguish between how we represent data and how we imple-
ment algorithms manipulating the data. For example, table 5.3 shows the
addition of seven and five expressed in binary and in decimal. There is
nothing special about either representation of the numbers; for both rep-
resentations we can implement addition by writing an addition algorithm.
Further, having chosen an implementation, when we want to add we don't
have to worry about how numbers are represented nor how addition is
implemented.

We can implement every operation using a one-dimensional array. This
must be true since in present-day computers all programs are eventually
translated into nothing more than a very long list of binary numbers. More
generally, we can implement all operations using any-structure. The ques-
tion is: Which operations will be efficient? Most applications only use a

3 Assuming that we don't delete more elements than we insert. We could conceivably have
delete requests for elements that aren't there.
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few operations, so our problem is to choose an implementation that best
fits the collection of operations necessary for the current application. Let's
call this collection of operations the application's menu.

1 1 1 1

11 1 7
+ 11 + 5

1 0 1 0 1 2

Table 5.3 Adding in binary and in decimal

Let's distinguish between allowing every operation-every implementa-
tion does this if expense is no object-and supporting an operation. Let's
say that an implementation supports an operation if the operation is cheap
with that implementation. In this chapter, an implementation supports an
operation if the operation takes at most polylogarithmic time and the imple-
mentation uses at most linear space.

Even though two structures may have the same menu, the distribution
of costs for each operation will, in general, be different. If the demand
for an operation is very high in a particular application then we should
choose the structure that supports it most cheaply, even if other structures
are better overall. So we also have to take into account the demand for
each operation; let's call this the menu's profile.

Suppose we keep data in no special order in a one-dimensional array.
Here, Insert, Find-Oldest, Find Youngest, Find First, and Find Last are, or
can be made, constant time. But Copy, Find, Delete, Union, and so on,
are linear. So this implementation supports the menu: Insert, Find Oldest,
Find-Youngest, Find First, and Find-Last.

We can add Union to the menu by allowing pointers; each struc-
ture is now a collection of one or more one-dimensional arrays linked
together. This takes more space but Union is now constant time while
previously supported operations cost asymptotically the same. As a by-
product, we can now Create and Destroy structures cheaply. So this new
implementation supports the menu: Create, Destroy, Insert, Find-Oldest,
Find Youngest, Find First, Find-Last, and Union. It's profile is a different
matter; it depends on the distribution of the various numbers of each
operation the particular application requires.

Ps If a pointer is about the same size as an element, at most how much extra
space does this implementation use?
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Some menus are so popular that structures specifically supporting them
have names. See table 5.4. A dictionary is the dynamic form of the simple
search problem we worked on in chapter two, and a priority queue is
the dynamic form of the first selection problem we worked on in chapter
three. Given either of these structures we can solve the dynamic form of
the sorting problem we worked on in chapter four. Of the structures in
the table we are most interested in queues and partitions.

Structure Menu
Stack INSERT, GET-YOUNGEST

Queue INSERT, GET OLDEST

Priority queue INSERT, GET LARGEST

Mergeable queue INSERT, GET-LARGEST, UNION

Dictionary INSERT, DELETE, FIND

Partition UNION, FIND-STRUCTURE

Table 5.4 Some common structures

5.2 Queues and Partitions

Sometimes it happens that a man's circle of
horizon becomes smaller and smaller, and as

the radius approaches zero it concentrates
on one point. And then that becomes his

point of view.

David Hilbert

The central property of many datasets is that one element is easiest to get
at or serve. Usually, when the elements are served depends on when they
were put into the collection. For example, queues at a bank, post office,
bus stop, or check-out counter; and stacks of books, dishes, stereo equip-
ment, or planes in a holding pattern. Although most of these examples are
linear, in general they don't have to be. For example, in a stack of books,
two or more books could be on one level. Once we get to that level we
can pick any one next until all are gone, then we go to the next level.

If we always serve the oldest element of a structure first, the structure is
a queue; if the youngest, a stack. A queue supports Insert, and Get Oldest.
A stack supports Insert, and Get-Youngest. If we serve elements depending
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A QUEUE

on how important they are, the structure is a priority queue. For example,
if a plane is low on fuel, it gets high priority, even if it arrives last. A
priority queue supports Insert, and Get Largest (or Get Smallest).

A PRIORITY QUEUE

If we keep track of insertion times, or if the elements are from an order-
able set, then we can make a priority queue act like either a stack or a
queue. This is a general property of the three classes of special purpose
structures sketched in table 5.2 [p. 313]. Potentially, we could use place,
size, or time to order elements, depending on the native properties of the
elements and the structure's implementation. We can't use place if the
structure isn't naturally linear, or size if the elements aren't drawn from an
orderable set, or time if we can't keep track of when elements are inserted.
The point is that these things can be done but, depending on the struc-
ture and the elements, they may not be cheap. It is common to confuse
the fact that a particular structure is naturally linear (for example a one-
dimensional array is naturally linear) with the use to which it was put. For
example, a structure that has to keep timed or orderable elements doesn't
have to be linear, and a linear structure doesn't have to be able to retrieve
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elements' insertion times or their rank (if they are orderable) from their
linear positions.

The algorithms in implementation 5.1 implement a stack using a one-
dimensional array; we could implement it just as easily using a linked list,
and the same is true for queues, but not for priority queues. Further, we
could use either binary trees or binomial trees to implement each of the
queues. And we can even implement all three queues implicitly.

Mergeable Queues

Now we want the menu: Create, Insert, Union, and Get-Largest; structures
supporting these operations are mergeable queues. Merging two heaps by
inserting all elements of one heap into the other can take Q (n lg n) time.
We can reduce this to linear time by forgetting all relations and building a
heap on the elements of both structures from scratch. (As we saw in the
previous chapter, creating a heap from scratch takes linear time. ) Finally,
we could conceivably take a leaf from the larger heap, make it the root
of the two heaps, and let it trickle down the newly created heap. This is
logarithmic, but could be tricky to code.

Fortunately, we do know one structure that supports merging, at least
for some sizes: a binomial tree. We can merge two binomial trees having
the same power of two number of elements in constant time-just compare
their roots and hang the smaller off the larger, making a binomial tree twice
as large as the two original ones. Call a binomial tree where each node
is at least as large as its children a binomial heap. (See figure 5.4. ) We
now have an implementation, but only for powers of two elements. Next
we want to support general Union.

............ 7 8

5 3 4 6 5 3 7

2 1 2 4 6

1
Figure 5.4 Merging two four-node binomial heaps

Ps How can we do this?
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{ Stack is implemented as an array Stack[1.stack-size],
with youngest element Stack[stack top], and oldest Stack[1].
stack size > 1; stack size > stack-top > 0.
Initially stack-top is 0. }

INSERT (element, Stack)
{ Add element to Stack. }

if FULL(Stack)
then

ERROR ("stack full")
else

stack top <-- stack-top + 1
Stack[stack top] ,- element

GET-YOUNGEST (Stack)
{ Delete and return the most recent element in Stack. }

if EMPT= (Stack)
then

ERROR ( "stack empty")
else

element +- Stack[stack top]
stack top +- stack-top - 1
return element

EMPTY (Stack)
{ Test whether Stack is empty. }

if stack top = 0
then return true
else return false

FULL(Stack)
{ Test whether Stack is full. }

if stack-top = stack-size
then return true
else return false

Algorithm 5.1
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First, how can we Union two binomial heaps having different powers
of two elements? Easy: Just keep them separate in a new structure! This
new structure will have two binomial heaps. In general, we may want to
Union two priority queues of sizes n and m, and neither n nor m will be
powers of two. So we need to extend binomial heaps to work when n is
not a power of two.

Call a set of trees a forest. A set of binomial trees is then a binomial
forest. (See figure 5. 5. ) A binomial queue is a forest of binomial heaps,
each with different powers of two elements. Since we can always decom-
pose n uniquely into powers of two, let's make a binomial queue of size n
have a binomial heap for each power of two in the binary representation
of n.4 (See figure 5.6. ) This idea of taking a static structure and dynamiz-
ing it by decomposing the number of elements into powers of two (or any
of several other decompositions) is widely applicable.

Figure 5.5 Binomial forests with one to eight elements

5 3 7

2 4 6

1
Figure 5.6 A seven-node binomial queue

4 Since there are at most a logarithmic number of powers of two in the binary representation
of n, there are at most a logarithmic number of binomial heaps in any binomial queue.
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Now to Union two binomial queues we can start with the two smallest
binomial heaps and work up to the largest. We can add their component
binomial heaps as if they were binary numbers. (See figure 5.7 and com-
pare with the binary addition in table 5.3, page 315.)

Figure 5.7 Merging two binomial queues of sizes seven and five

To Create a binomial queue, we just create a root. To Insert an element,
we Create a binomial heap with the element as root, put the heap in a new
binomial queue, then Union the two binomial queues. So binomial queues
support Create in constant time, and Insert and Union in logarithmic time.
To Get-Largest, we first scan the roots of each binomial heap in the bino-
mial queue. That gives us the largest in logarithmic time. Then we delete
its node and make all its children roots of new binomial heaps in a new
binomial queue. Then we Union this new binomial queue with the origi-
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nal. Thus, binomial queues are mergeable queues; they support the menu:
Create, Insert, Union, and Get-Largest.

Partitions

We now want the menu: Create, Find-Structure, and Union; structures sup-
porting it are called partitions since the elements are partitioned into dis-
joint sets. We have a fixed universe of n elements and we want to maintain
disjoint sets of elements; initially each element is in its own set. Let's use
trees to implement the sets where each node points to its parent, and a
root points to itself. Initially every node is in a set by itself (so it points to
itself). Each tree's root will be the name of the tree and a Find-Structure
on any node in a tree will follow a path from the node up to the root, thus
finding the name of the set to which the node belongs.

Now, whenever we Find-Structure we are gaining information about
ancestor relationships, so we can use that information to make the ances-
tors found on the way to the root children of the root. This way, when next
we Find-Structure for one of these elements, or any of their descendants,
we won't have as far to go to get to the root. So although a Find-Structure
may take twice as long as it would if we didn't do any of this compress-
ing, the compression will pay off over a long sequence of Find-Structures.
Let's call such a Find-Structure a compressing Find-Structure.

One way to Union is to create a new set and copy all elements from
both sets to the new set. But it's more efficient to just add the elements of
the second set to the first (by making them point to the first root), then
rename the first set. This saves us having to touch any of the elements
of the first set. Further, since we do work proportional to the number of
elements in the second set, we should add the elements of the smaller set
to the larger, rather than vice versa. Finally, to avoid having to count the
elements each time we Union (and so pay linear cost for each Union) we
can keep track of the size of each set. Let's call such a Union a weighted
Union.

When Unions are weighted, no tree is more than logarithmic in height;
we've seen this idea before when finding the second largest in chapter
three, and in the programming section of quick sort in chapter four. Imple-
menting weighted Union and compressing Find-Structure as in implemen-
tation 5.2 can be shown to support the menu: Create, Find-Structure,
and Union. Although several operations can be expensive, each opera-
tion averages at most logarithmic time over a sequence of n operations.



5.2 Queues and Partitions 323

{ An implementation of two partition operations.
Size[nodel is the size of the set with root node;
Parent[node] is node if node is the root of a set,
otherwise it is the parent of node. }

FIND-STRUCTURE (node)
{ Find the root of the set containing node,
then compress the set using any information gained. }

next -- node

while Parent[next] 5 next
next -- Parent[next]

root *- next

next +- node
while next 0 root

save +- Parent[next]
Parent[next] ,- root
next -- save

return root

UNION (node,, node2 )
{ Merge the sets containing node1 and node2 . }

root1 +- FIND-STRUCTURE (node1 )
root2 +- FINDSTRUCTURE (node2 )
if root1 = root2 then return

sum <-- Size[root1] + Size[root2]
if Size[rooti] > Size[root2 ]

then
Parent[root2 ] root1  Size[root1 ] <- sum

else
Parent[root1 ] -- root2 ; Size[root2 ] - sum

Algorithm 5.2
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5.3 Connecting Telephones

The difference between a text without
problems and a text with problems is like

the difference between learning to read
a language and learning to speak it.

Freeman Dyson, Disturbing the Universe

Now we're ready to solve some graph problems. Nowadays all land-based
communication networks (like the telephone system and cable television)
are switching from copper wire to fiber-optic cable. Fiber-optic cable has
much higher bandwidth ;5 it's almost wiretap proof; it needs less power to
send information over the same distance; it's not affected by power surges
or electromagnetic interference; it's thin and lightweight; and it doesn't
rust. The present phone system has many inconsistencies and inefficiencies
because it evolved from earlier systems. Let's take advantage of the change
to redesign the phone system.

Each user has a phone and we want to connect them so that every user
can talk to every other user. We want a communications network provid-
ing the most service to the user at the least cost to the phone company.
Let's call this the telephone problem.

There are many ways of measuring "cost" and "service" and each defini-
tion leads to a different version of the problem. Let's assume that the most
expensive thing is running a cable between two users. Also, let's assume
that every phone can route calls from any phone directly connected to it to
any other phone directly connected to it. So Alice can talk to Bob if there
is a direct connection between them, or if she can talk to someone who
can talk to Bob. Thus, connectivity is transitive.6 Finally, let's assume ini-
tially that the time to place a call is proportional to the number of times the
call must be rerouted to reach its destination. Call each rerouting a hop.
Users want to minimize the number of hops their calls have to make, and
the phone company wants to minimize the number of cables it has to lay.

Suppose there are only four users. Figure 5.8 shows all non-isomorphic
graphs with four nodes; Now imagine that each graph is a map, each node
is house, and each edge is a road. Let's say that when we reach a node by
driving along an edge we visit it. A graph is connected if from any node

5The bandwidth of a communications channel is the amount of information the channel can
carry per second.
6Current phones don't allow much call rerouting through them; the most we can do today
is to have one of our phones route calls to another of our phones. But it's sure to happen
eventually.
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we can visit every other node by driving only along edges. That is, a graph
is connected if there is a sequence of edges joining any two nodes. Six of
the eleven graphs are connected. Thinking of graphs as beads and strings,
a graph is connected if by picking up any bead, we pick up the whole
graph. If a graph is disconnected we can decompose it into a number of
connected components, each of which is itself a connected graph (with a
smaller number of nodes). Of the five disconnected graphs in the figure,
one has four components, one has three components, and three have two
components each.

0 0

Figure 5.8 All graphs with four nodes

Now let n be the number of users. What's the least and most number
of edges in a connected graph with n nodes? Well, since all our graphs
are simple, no node can have more than n - 1 edges touching it. So there
can't be more than n(n - 1) edges in all. But each of these edges touches
another node, so perhaps it's about half that number?

Ps What's the largest number of connecting cables?

The most we can do is connect everyone to everyone else directly. So
there is a cable for every two people, and the number of ways of choosing
two things from n things is (n). So the maximum number of edges is
n(n - 1)/2. A graph is complete if it has the maximum number of edges
(see figure 5.9). Since there are about half a billion phones in the world,
to connect them in a complete graph would take about 125 x 1015 cables.
With a world population of about five billion, this is about twenty-five
million cables per person! This is the best solution for the users since every
call is placed immediately, but it's too expensive for phone companies.

Pause What's the smallest number of connecting cables needed?
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Figure 5.9 All complete graphs with up to six nodes

Looking at figure 5.8 we might guess that a connected graph has at
least n - 1 edges. Is this true? From the figure we see that a graph with
n - 1 edges is not necessarily connected; there are three graphs with three
edges, but only two of them are connected. Okay, suppose we start with
a connected graph. We need to add at least one edge to connect a new
node. Since a graph with one node has no edges, then, by induction, we
need at least n - 1 edges to connect an n-node graph. A connected graph
with n nodes and n - 1 edges is a tree. (See figure 5.10.)

Figure 5.10 All trees with six nodes

Ps There is only one tree each with one, two, and three nodes, and there are
two with four nodes; how many trees have five nodes?

So the smallest number of connecting cables is n - 1 and in that case
the connection graph is a tree; if there are less than n - 1 cables then
there is at least one unconnected user. Since we have assumed cost to
be proportional to the number of cables, the phone company wants to
connect users in a tree. Now, half a billion nodes is too many for mere
intuition.7 But the numbers grow too fast even for trees. Although there
are only six trees with six nodes, there are forty-seven with nine nodes!
So we cannot list all trees connecting half a billion nodes. Now that we've
settled on trees, the telephone problem has become: Which tree would
users like best?

7There are 274,668 graphs with only nine nodes. In general, it is possible to show that
asymptotically there are o(2n212/n!) graphs with n nodes.
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From the user's point of view the problem with some trees is that a call
could have to hop many times. For example, if Alice and Bob live on
opposite ends of the first tree in figure 5.10, a call from one to the other
hops four times. Knowing all about divide and conquer, phone companies
reduce hops by building substations to handle some of the routing. Each
substation handles all the calls from a particular area, and it passes all calls
to different areas up a chain of substations, each responsible for larger and
larger regions. Substations are easier to build if they are all the same, so
suppose each substation can handle k other substations.

Unfortunately although the number of hops goes down, a call can be
potentially delayed at a substation roughly proportional to the largest num-
ber of calls a substation may have to handle. If we connect all n users
in a chain, like the first tree in figure 5.10, then a call could have to hop
roughly n times before reaching its destination. If the phone company
builds one substation, the system will look like the last tree in figure 5.10.
Every call goes to the substation and the substation routes it to the right
user, so a call only hops once. But the maximum call delay is still propor-
tional to n, and the substation has to handle too many users.

We can think of a chain as a height n - 1 tree. If we build one substa-
tion, the delay is proportional to n. We can think of this as a height one
tree; the substation is the root of the tree and the tree has n leaves (the
users) all directly connected to the root. (See the second arrangement in
figure 5.11. ) If we can afford k + 1 substations then we can build a height
two tree: k substations each serving n/k users, and one substation, the
root of the tree, serving those k substations. (See the third arrangement
in figure 5.11. ) The number of substations goes up (so the cost goes
up), but the potential delay down (so the service goes up). Now the
longest time to place a call is proportional to

n
k+T

A call is delayed proportional to n/k at whichever of the level one substa-
tions it goes to, and delayed proportional to k at the root substation. The
cost of a return down the tree will be proportional to the same function.
As we saw in the analysis of JUMP-SEARCH in chapter two, page 102, we can
differentiate with respect to k to find the worst delay. k + n/k is smallest
when k = VI-, and the minimum is 2v•-. This is better than the height
one tree, but each substation must still handle v users.

If we can afford k2 + k + 1 substations we can build a height three tree
(see the third tree in figure 5.12); the worst delay is now proportional to

n
2k + ý2
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Figure 5.11 Three ways to connect nine users

A call is delayed proportional to n/k 2 at whichever of the level two sub-
stations it goes to, and delayed proportional to k at its level one substation
and at the root substation. 2k + n/k 2 is smallest when k = VHn, and the
minimum is 3Vi/. Further, now each substation has to handle only Cn
users.

1 substation k + 1 substations k2 + k + 1 substations

k

n n/k n/k n/k 2  n/k 2  n/k 2

Figure 5.12 Thinking of the connection graph as a hierarchy

In general, if the tree has height m, there are (km- 1)/(k-1) substations,
and each level mr-I substation has to handle up to n/km users. The worst
delay is proportional to

mk +-n
km

Pause What k minimizes this function?

The smallest delay occurs when k = VHn, and the delay is then propor-
tional to m V/n. To find the best such tree we have to find

min{m V1n}
m

Let's differentiate with respect to m to find this function's minimum.
First, let's put it in a more easily differentiable form

m mn = mM ei = m(elnn)1/m = me(lnn)/m
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Now,

d (me(lnn)/m) - e(lnn)/m + m (- In- n Onn)/m
dm

= e(ln n)/m I nne(ln n)/m

e e(lnn)/m (i - I1- )

This derivative is zero when m = In n and the second derivative is positive
there, so the function is smallest there.

Ps Check that the second derivative is positive when m = Inn.

So the best performance is achieved by a tree of depth m = Inn and
the tree has a branching factor of

k = •/n- =n 1/ 1nn = (elnn)1/lnn = e

Obviously we can't build substations that handle e callers! Fortunately we
can approximate the best tree by branching two or three times. If the
connection graph must be a tree this gives the most service to the users,
since it minimizes the time to place a call, and the phone company has to
lay no more than 2n cables.

Ps Why only a linear number of cables?

The real phone system isn't a tree because although trees are the cheap-
est connection graphs they aren't reliable; if any line goes out the graph
becomes disconnected. Further, phone companies have to worry about
things like the length of cables, their geographic placement, their band-
width, their maintenance, their cost, and the best mix of satellite uplinks,
land lines, and undersea cables. Finally, a substation is more expensive
than a constant number of extra cables, so it isn't sensible to build 0(n)
substations just to minimize the number of cables. However, no matter
what the final system is, substations will still handle only a constant num-
ber of calls. This number is larger than e but still constant; and whenever
substations only handle a constant number of calls the system will have a
hierarchical structure.
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5.4 Partially Sorting

Important though the general concepts and
propositions may be with which the modern

industrious passion for axiomatizing and
generalizing has presented us... nevertheless

I am convinced that the special problems
in all their complexity constitute the stock

and core of mathematics...

Hermann Weyl, The Classical Groups

When building a house we can't put on the roof before putting up the
walls. Similarly, there are a number of things to do before workers start
laying fiber-optic cable for the new phone system. They can't lay cable
until they put conduits in. They can't put conduits in until they dig guide
channels. And so on. However they can do several things at the same
time-for example, some can test new phones while others dig channels.
Our new problem is to arrange a set of dependent subtasks so that the
overall task can be done efficiently. This is the sequencing problem.

Let's model this problem with graphs. Let each task be a node and
connect a pair of nodes if one must be done before the other. This graph
must be directed; edges specify which nodes precede other nodes. Call a
directed graph a digraph, for short.

Imagine a graph is a road system. If, by driving only along edges, we
can start at one node and visit at least two other nodes before returning
to our start, then the graph is cyclic. A graph with no cycles is acyclic.
The degree of a node is the number of edges touching it. A cycle is a
connected graph in which every node has degree two. Five of the eleven
graphs in figure 5.8, page 325, are cyclic, but only one is a cycle; in each
of these graphs there is a subset of at least three users who can talk to
each other directly. Note that two connected nodes alone do not form a
cycle since neither node has degree two.

Ps Find a cyclic graph, a cycle, and an acyclic graph.

Now what should a cycle be in a digraph? A digraph can have a cycle
when we remove the directions (for example, if, as some drivers do, we
pretend that one-way streets are two-way) but this may not be a cycle
in the directed version of the graph. Cycles should now be directed too.
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Unlike undirected graphs, a digraph can have cycles of only two nodes,
since these nodes can each have degree two. A directed acyclic graph has
no directed cycles. Let's call a directed acyclic graph a dag, for short. All
the digraphs in figure 5.13 are acyclic, even though the last is cyclic if we
remove all directions.

0

o

0

0

0 0

Figure 5.13 All dags with up to three nodes

Dags are like generalized rooted trees; the differences are that a node
in a dag can have more than one parent and the dag can have more than
one root. 8 A root of a digraph is any node of zero indegree (no node
points to it); a leaf is any node of zero outdegree (it doesn't point to any
node). For example, posets are dags; every maximal element is a root
and every minimal element is a leaf. But not every dag is a poset. (One
dag in figure 5.13 is not a poset, which is it?) Unlike arbitrary digraphs,
every dag has at least one root and at least one leaf.

Pause Why must a dag always have a root?

We can show that every dag has a leaf by contradiction. Suppose a dag
doesn't have a leaf. This means that every node has non-zero outdegree.
So no matter where we are in the graph we can always go forward. But
there are only a finite number of nodes, so eventually we will hit a cycle.
But a dag is acyclic, so we have a contradiction. So there must be at least
one leaf. Similarly, there must be at least one root.

8, So she went on, wondering more and more at every step, as everything turned into a tree

the moment she came up to it.' Lewis Carroll, Through the Looking-Glass.
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We can also talk about the descendants of a node in a dag: those nodes
pointed to by the node or transitively pointed to by a node pointed to by
the node. In sum, if we take a node's-eye view then a dag looks like a
rooted tree. A topological sort of a dag is a listing of the nodes of the
dag such that each node is listed before any of its descendants. Finding
a topological sort is similar to sorting. When sorting, every node either
precedes or succeeds every other node; here some nodes may be inde-
pendent of other nodes. Further, when sorting we have to compare nodes
to find their order; here we're given their order, but we may have some
freedom in sequencing them since some pairs of nodes may have no
special order.

Pause Why is the sequencing problem equivalent to topologically sorting a dag?

Now how do we find a topological sort of a dag? Well, any root is
fair game for the first node to be listed since no node precedes it (it has
no ancestors). After we list a root, then what? Well, we can list all other
roots, but there may be only one. Instead, imagine removing a root. (See
figure 5.14. ) After we remove a root and all its outgoing edges some other
nodes may become roots. But will there always be a new root? Well no,
but the reduced digraph is also a dag, so there will still be at least one
root. (See figure 5.15. ) We can then list this root and remove it, and so
on, until there are no more nodes to remove.

Figure 5.14 Removing a root can make more roots

Pause Why is the reduced digraph a dag?

At any time there is a frontier of roots. There may be many roots but we
don't care what order they are listed in, as long as none is listed before any
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Figure 5.15 Removing a root doesn't necessarily make more roots

of its descendants. So we can use a set, Roots, to keep track of the frontier
of as yet unlisted nodes. After removing a root we check its children (if
any) to see if they have become roots. This way we won't list a node
before any of its ancestors, so the listing produced is a topological sort of
the dag. This is algorithm 5.3. (The algorithm uses the symbols "\" and
"U." A \ B is the set of things in A that aren't in B; Au B is the set of
things in A or in B. )

TOPOLOGICAL SORT (Digraph)

{ Find a topological sort of Digraph, if it has one;
return the sort in List, a labelling of Digraph's nodes.

Use the sets Roots and Children as temporary storage. }

Roots +- empty
for each node E Digraph

if node is a root in Digraph
Roots -- Roots U {node}

label +- 0
while Roots is not empty

next node +- any element in Roots
Roots 4- Roots \ {next-node}
label label + 1 ; List[next-node] , label
Children 4 all children of next node in Digraph
Digraph -- Digraph \ {next-node}
for each node E Children

if node is now a root in Digraph
Roots <- Roots U {node}

if Digraph is empty
then return List
else return "Digraph is cyclic"

Algorithm 5.3
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What happens if the digraph is cyclic? Well, what does that mean in
our original sequencing problem? There must then be two tasks that each
precede the other!9

Pue Why does our algorithm detect if the digraph has a cycle?

Programming

It's best to think of structures as objects. Packaging graphs lets us separate
concerns and that makes algorithms easier to write, easier to prove cor-
rect, and easier to analyze. After getting a working algorithm we can then
worry about tweaking it to improve it further-but only if absolutely neces-
sary. As an object, a digraph has various attributes; for example: number
of nodes (n), number of edges (1); sets containing all roots, leaves,
edge labels, node labels; lists of each edge's nodes, each node's edges,
each node's indegree, each node's outdegree, each node's parents, each
node's ancestors, each node's children, each node's descendants, and so
on. If it's a graph instead of a digraph, we need attributes like each node's
degree, each node's neighbors, and so on. If it's a network we also need
a set containing each edge's cost.

To represent the dag we could keep all nodes in an array, perhaps num-
bered from 1 to n, and associate the set, perhaps as a linked list, of the
array locations of the nodes each node points to. The node's labels (if
any) can be kept elsewhere, with pointers matching them to the appro-
priate array location. And we can implement the set of children of each
node as a list, Children. This representation uses O(n + 1) space.

With Children we can find a node's children in time linear in the number
of children; and we can initialize the list Indegree by running through the
set of nodes and checking for any with no children. This takes O(n) time.
We can implement the set Roots using a stack or a queue, it doesn't matter,
the algorithm will still be correct.

Ps Why doesn't it matter for correctness? Does it matter for efficiency reasons?

With the representation choices in algorithm 5.4, TOPOLOGICAL SORT'S
worst cost is O(n + 1), since we touch each node at most twice (once
when we put it onto the stack and once when we take it off the stack)
and we handle each edge at most once.

9"The beginner.., should not be discouraged if... he finds that he does not have the pre-
requisites for reading the prerequisites." Paul Halmos, Measure Theory
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TOPOLOGICAL SORT (Digraph)
{ Find a topological sort of Digraph, if it has one;
return the sort in List, a labelling of Digraph's nodes.
Indegree is a list of each nodes' indegrees, and
Children is a list of each nodes' children.
Use Stack as temporary storage. }

CREATE (Stack)
for node from 1 to NODES(Digraph)

if Indegree[node] = 0 then INSERT( node, Stack)

label +- 0

while not EMPTY(Stack)
next-node <- GET-YOUNGEST (Stack)
label <- label + 1 ; List[next-node] <-- label
for each node E Children[next-node]

Indegree[node] <- Indegree[node] - 1
if Indegree[node] = 0 then INSERT(node, Stack)

if label = NODES (Digraph)
then return List
else return "Digraph is cyclic"

Algorithm 5.4

5.5 Exploring Graphs
Thanks to the interstate highway system, it

is now possible to travel across the country
from coast to coast without seeing anything.

Charles Kuralt, A Life On the Road

Now let's explore the phone system; we want to know things like: Does it
have a cycle? Is it connected? If it isn't connected, what are its connected
components? If it is connected, is it multiply connected? If it isn't multiply
connected, what are its weakest points? We can already answer the first
question since TOPOLOGICAL SORT will report if a graph is cyclic, but what
about the other questions? TOPOLOGICALSORT will not notice if the graph
is disconnected (see figure 5.16).
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Figure 5.16 Topological sort doesn't care about connectedness

Thinking of a graph as a system of roads, there are two natural ways of

exploring a new city-adventurously (depth-first) and timidly (breadth-
first). When exploring depth-first we go as far as possible along one path
without revisiting any node, then backtrack to our last turning and go as far
as possible down the next path, and so on, until we visit all nodes. When
exploring breadth-frst we spiral out from the known to the unknown, vis-
iting all places within the same radius before venturing further.

If our home base is near the center of town, then going breadth-first
means that we first visit all the tourist traps; going depth-first avoids tourist
traps early on, since early on we're almost always visiting places near the
fringe of town. In both modes the next place to visit is always near-by.
(See figure 5.17). Imagine that each node is a bead and each edge is a
piece of string, all the same length. Now pick up the bead representing

Figure 5.17 Exploring a town depth-first and breadth-first
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the start node (see figure 5.18). When exploring breadth-first we first visit
all beads on the level below the start bead, then all beads on the next level
down, and so on. When exploring depth-first we run all the way down
the graph and visit one of the leaf beads, then move up one level to the
previous bead and run all the way down another path to a leaf bead, and
so on.

Figure 5.18 Picking up a graph to explore it

If we go depth-first then to retrace our steps we need a stack. If we go
breadth-first then to retrace our steps we need a queue. We can generalize
this and make the strings of different lengths. Now we visit all nodes one
level down within a certain distance and repeat for the rest of the graph.
Thinking of the lengths as priorities, where longer strings imply lower pri-
ority for the pendant bead, leads to exploring the graph priority-first. This
is how we really explore a new city-we first visit the places of most inter-
est to us, say, friends, restaurants, and book stores, then we visit places of
lesser interest, say, music stores, cinemas, and coffee houses, and so on.

Finding a topological sort of a dag is the same as exploring the dag
breadth-first. We can think of it as visiting all roots in the dag, then all
children of all roots, then all children of those nodes, and so on. Hmm,
exploring a dag depth-first is just the reverse of topologically sorting the
dag! When exploring a dag depth-first we drive all the way down to a leaf,
visit it, then go back to the last turning and drive down to another leaf.
The first nodes we visit are always leaves and, just as in TOPOLOGICAL SORT,

there is always a frontier of as yet unvisited leaves. (See algorithm 5.5 and
algorithm 5.6. )

Ps Does depth-first visit every node of a connected digraph starting from any
node?
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EXPLORE-BREADTH-FIRST (Graph, start)
{ Explore Graph breadth-first beginning at start;
return the order in List, a labelling of the nodes.
Use Queue and Type as temporary storage.
Graph is connected; start is a node in Graph. }

for each node E Graph
Type[nodel ,- unvisited

CREATE (Queue) ; INSERT (start, Queue)
Type[startl - seen ; List[start] +- 1
while not EMPTY(Queue)

next node <-- GET OLDEST(Queue)
for each node E Neighbors[next node]

if Type[node] = unvisited
Type[node] -- seen
List[node] <-- List[next node] + 1
INSERT (node, Queue)

Type[next-node] +- visited
return List

Algorithm 5.5

Although depth-first must visit every node in a connected graph starting
from any node, figure 5.19 shows that it does not necessarily visit every
node in a connected digraph. If we start exploring from the top node
in the figure then we will visit all nodes, but if we start from any other
node then we won't visit all nodes. If the digraph in the figure had no
top node then depth-first would never see all of the digraph. However we
can make it visit all nodes by running it as many times as necessary, each
time starting from a node that hasn't yet been visited.

Ps This works if we want to visit places (nodes) and not streets (edges).
How can we guarantee to visit all streets?

If a graph is disconnected we can use EXPLORE-DEPTH-FIRST to find its
connected components. Thus in linear time we can tell whether a graph
is connected. Now almost anything we want to do to a graph requires at
least linear time (just looking at all nodes and edges). So we can always
assume that a graph is connected; the asymptotic cost of our algorithms
will be the same.
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EXPLORE-DEPTHFIRST (Graph, start)
f Explore Graph depth-first beginning at start;

return the order in List, a labelling of the nodes.
Use Stack and Type as temporary storage.

Graph is connected; start is a node in Graph. }

for each node E Graph
Type(nodej ,- unvisited

CREATE(Stack) ; INSERT (start, Stack)
Type[start] +- seen ; label +- 1
while not EMPTY(Stack)

next node +- GET-YOUNGEST(Stack)
List[next-node] +-- label ; label *-- label + 1
for each node E Neighbors[next-node]

if Type[node] = unvisited
Type(node] <- seen
List[node] <-- List[next-node] + 1
INSERT (node, Stack)

Type[next-node] +- visited
return List

Algorithm 5.6

More generally, suppose P is a property and G is a graph. If in linear
time we can test whether G has P, and if it doesn't then we also identify
a largest subgraph that has P, then we can always assume that G has P.
Because we can test for P in linear time, we can preprocess G to iden-
tify a largest subgraph that has P, and if that subgraph is G itself, we're
done. Otherwise we remove the subgraph from G and test again. We can
charge the work done at each step to the nodes in the subgraphs found
and removed, so the whole process takes linear time. This reduction idea
is very important; we will see it again in chapter seven.

Figure 5.19 Depth-first doesn't always visit all nodes
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5.6 Broadcasting Information

To win one hundred victories in one
hundred battles is not the acme of skill.

To subdue the enemy without fighting
is the acme of skill.

Sun Tzu, The Art of War

Computers are comfortable with bits and bytes but humans are comfortable
with sounds and sights. However, digitized sounds and sights take up an
enormous number of bits and bytes. Besides letting more people talk to
each other at the same time, high bandwidth communications channels let
computers join the conversation.

Now that we have networked computers, we want to broadcast informa-
tion from one node to all other nodes. How can we do this cheaply? This
is the information broadcast problem. To solve it we must find a cheapest
subgraph connecting all nodes. This subgraph must be a tree, since if we
have a cycle we can delete an edge, and so lower its cost. This tree must
be a spanning tree of the graph representing the communications system.
A spanning tree is a tree with the same nodes as the graph, whose edges
are a subset of the edges of the graph. Since a tree is minimally connected,
a spanning tree uses the least number of edges to broadcast a message.

More generally, each communications channel has a cost and costs may
vary from channel to channel (for example: posting a letter normally,
sending it express, and faxing it). Alternately, each channel may have
a length and we want to minimize the overall travel time. If the edges
have numbers representing costs (capacities, lengths, or bandwidths) the
graph is a network. To broadcast information efficiently we want a cheap-
est spanning tree of this network.

Now how do we find a cheapest spanning tree? If we divide the nodes
of a network into two parts then any of the cheapest edges connecting a
node in the first set with a node in the second set must be in a cheapest
spanning tree of the network.

Pause Why is this true?

Let's proceed by contradiction. Divide a network into two parts. Sup-
pose A is one of the cheapest edges joining any two nodes in the two parts
of the network. Is it possible that A is not in any cheapest spanning tree of
the network? Well consider any cheapest spanning tree not containing A.
A spanning tree is a tree, so it is connected. So there must be at least one
edge in the tree connecting the two parts, call it B (see the first drawing in
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figure 5.20). Now add A to this tree. This creates a cycle since trees are
minimally connected. Now delete B. This produces a new spanning tree.

A =A

9B BB

Figure 5.20 Dividing the nodes of a network into two

P use Why is this true?

Further, since all edges of the tree are the same except that we have
substituted A for B, and since A is no more expensive than B, then we
have another cheapest spanning tree. So if we divide a network into two
parts then each of the cheapest edges joining the two parts must be in at
least one cheapest spanning tree.

CHEAPEST-SPANNINGTREE (Network)
{ Find a cheapest spanning tree of Network,
by building a tree incrementally. Return the tree in Tree.
Use Priority-Queue as temporary storage.
Cost[nodel, node2] is the cost of the edge joining
node, and node2 ; each edge has non-negative cost.
Network is connected. }

CREATE (Priority-Queue)
for each node1 E Network

CREATE ( {node1 })
for each node2 E Neighbors[node1 ]

edge +- (node1, node2 )
INSERT (edge, Cost[edge], PriorityQueue)

CREATE ( Tree)
while not EMPTY(PriorityQueue)

(node,, node2 ) <- GET_LARGEST(PriorityQueue)
if FIND-STRUCTURE (node,) # FINDSTRUCTURE (node2 )

Tree +- Tree uI {(node,, node2 )}

UNION(node1, node2 )
return Tree

Algorithm 5.7
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Now we have an algorithm: pick any node, the two sets are that node
and all n - 1 others. Examine all edges touching this node and greedily
choose a cheapest edge. Change to the node on the other end of the
chosen edge and look at all its edges, and so on. Keep adding edges
as long as they don't form a cycle. (See algorithm 5.7. ) We always
have a tree, and if the network is connected the tree grows until all
nodes are included. At this point it is a cheapest spanning tree of the
network.

Alternately, at each iteration we can pick a cheapest edge no matter
where it is in the network, as long as it doesn't make a cycle with the
already included edges. We can use a priority queue to keep edges
ordered by cost, and a partition to check for possible cycles. (See algo-
rithm 5.8. ) So the two ideas are to build a spanning tree, or build a
spanning forest. Both algorithms are examples of the greedy strategy.

CHEAPEST-SPANNINGTREE (Network)
{ Find a cheapest spanning tree of Network,
by building a forest incrementally. Return the tree in Forest.
Use Priority-Queue and Type as temporary storage.
Cost[node1 , node2] is the cost of the edge joining
node, and node2 ; each edge has non-negative cost.
Network is connected. }

CREATE (Priority-Queue)
for each node1 E Network

CREATE( {nodei}l) ; Type[node1 ] ,- unseen
for each node2 E Neighbors[node,]

edge +- (node,, node2 )
INSERT (edge, Cost[edge], PriorityQueue)

CREATE (Forest)
while there are unseen nodes

(node,, node2 ) -- GETLARGEST (Priority-Queue)
Forest +- Forest U { (node1 , node2 )}
Type[node1] +- seen

return Forest

Algorithm 5.8
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5.7 Distributing Flow

Tallyrand once remarked that an idealist

cannot last long unless he is a realist and
a realist cannot last long unless he is an

idealist.., this observation speaks for the
need to idealize real problems and to

study them abstractly but it also says that
the work of the idealist who ignores

reality will not survive.

Morris Kline, Mathematics: The Loss of Certainty

Things become both simpler and more complex when computers enter the
conversation. A cheapest spanning tree is the cheapest way to connect all
nodes, so if we want to broadcast a message to all nodes then it's the best
way to do so. But if we want to send a message to a specific node, must
we find a cheapest spanning tree of the whole network? The problem is
that a cheapest spanning tree is cheapest among all spanning trees, but the
path between any two nodes on a cheapest spanning tree is not necessarily
the cheapest path connecting them. We now want to find the cheapest
paths from one node to all other nodes.

Well how about trying the greedy strategy again? Unfortunately, greed
is good if we have to find all paths, but isn't necessarily good for any one
path; it's too short-sighted for that.10 Shooting from the hip means some-
times shooting yourself in the foot. To see the importance of a properly
designed routing algorithm consider the following incident in the history of
electronic networks. The arpanet is the earliest such network. Unlike tra-
ditional communication networks, the arpanet (and now the much larger
internet) runs itself; there is no central control. Instead, the net has pro-
tocols and machines on the net share the work of message subdivision,
message routing, and message recreation and delivery. Unfortunately dis-
tributed control makes large distributed systems more like organisms than
mechanisms; they can have viruses, fits, and plagues.

Unlike a phone call or physical mail, electronic mail may have a lot
of protocol information added. Depending on size, a message may
be divided into several pieces and routed all over the net. The target
machine then reconstitutes these pieces into the original message. (See
figure 5.21. ) The net does not have fixed routes to send messages; routes
are decided on demand to avoid congestion problems along well-travelled
routes, and to reroute traffic when nodes go down. The machines that do

10"Alas, regardless of their doom/ The little victims play!/ No sense have they of ills to come,/
Nor care beyond today," Thomas Gray, Ode on a Distant Prospect of Eton College.
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the routing are called imps (interface message processors). Imps calculate
routing costs dynamically to allow for net changes.

Figure 5.21 Delivering three parts of one electronic mail message

In 1972, one of the Los Angeles imps, let's call him Maxwell, experi-
enced a memory fault. The fault caused him to tell his neighboring imps
that there was a negative cost to send mail through him. So all of his neigh-
bors immediately started sending all their mail through him. Worse, since
imps calculate cost dynamically, all of his neighbors told their neighbors
that they had a smaller cost than they really did. So, all of their neighbors
started sending their mail through them! It was just like pulling the bathtub
plug-and all the water in the world headed for the unsuspecting Maxwell.
This rapidly brought the entire net down.

Now how can we find the cheapest path between nodes i and j in
a network? In the worst case it seems difficult to find the cheapest path
from i to j without finding the cheapest paths from i to all other nodes.
So let's develop an algorithm to find the cheapest path from i to every
other node. Looking at the problem this way makes it much easier. Since
we're going to find all cheapest paths from i we may as well find them in
the most convenient order.

So what's the most convenient first node? Well, right off we know
the cheapest path to every node neighboring i whose connecting edge is
cheapest among all nodes neighboring i. It must be the edge connecting
them to node i! So now all of those nodes are done (and there must be
at least one since the network is connected). What about the next most
cheapest node? Well it must either be a node neighboring i (besides the
cheapest ones) or a node next to one of the cheapest ones. So we need
only find the cheapest among all those paths.

And now an algorithm follows naturally. At any time there is a frontier
of nodes of various costs and none of these nodes' cost can decrease. To
grow the frontier we look at the cost of all the nodes next to each of the
nodes on the frontier. Eventually we will grow the frontier until we've
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used up all nodes, at which time we will know the cheapest paths from i
to every other node in the network.

For the second (and subsequent) set of nodes we have to find the
smallest of the following set of paths:

"* i's neighbors, besides the ones already chosen, and

"* those nodes next to any of i's neighbors, besides i itself.

The two hardest things to do are to find this node and then to update
the estimated costs of all nodes neighboring it. We can use a priority
queue to do the set maintenance. (See algorithm 5.9. ) This algorithm
is O((n + l) lg n).

CHEAPEST-PATHS (Network, start)
{ Find the cheapest path from start to each node in Network.
On return, Parent[node] will be the node preceding node
on the cheapest path from start to node,

and CostTo[node] will be the cost of that path.
Use Priority Queue and Type as temporary storage.
Cost[nodei, node2] is the cost of the edge joining
node1 and node2 ; each edge has non-negative cost.
Network is connected; start is a node in Network. }

CREATE (Priority-Queue)
for each node1 E Network

CostTo[nodel] -- oc ; Type[node1] *- unreached
for each node2 e Neighbors[nodei]

edge +- (node1 , node2 )
INSERT (edge, Cost [edge], PriorityQueue)

CostTo[start] ,- 0 ; Type[start] ,- reached

while not EMPTY(Priority Queue)
next node +- cheapest unreached node in Priority Queue
Type[next-node] +- reached
for each unreached node E Neighbors[next-node]

edge - (next node, node)
if CostTo[node] > CostTo[next node] + Cost[edge]

CostTo[node] -- CostTo[next node] + Cost[edge]
Parent[node] - next node

return Parent, CostTo

Algorithm 5.9
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5.8 Coda-Graph Therapy
Any philosophy that can be put

in a nutshell belongs there.

Sidney J. Harris, Leaving the Surface

The two major lessons of this chapter are, first, that there is much more to
efficiency than just speed, particularly since real algorithms have many dif-
ferent, and sometimes contrary, goals to achieve. Second, graphs encour-
age us to squint, and squinting helps us see the forest for the trees.

For economic reasons we have created complex electronic, power, and
telecommunications networks whose second-order characteristics we don't
understand. The only way we presently have to examine these character-
istics is to experiment on the networks themselves. Similarly, in the sixties
several governments experimented with seeding rain clouds. As we now
know, the weather system is much too complex for this simple-minded
experimentation to help. Our networks may in fact behave like the weather
system; small local changes can have global effects. Graphs help us deal
with this complexity.

As our systems become even more complex, we will become more like
therapists than scientists. The basis of science is reduction: take a complex
system, break it into pieces, understand the pieces, then put them back
together again. But this doesn't work for some systems; if every piece
depends on every other piece we cannot reduce the problem. Ultimately,
an infinite universe is incomprehensible to finite beings, and poetry is our
final defense. But in the meantime we must do our best. And our best is
science.

There's something strange about graph properties and complexity: finding
minimum cost paths in a graph is quadratic but, finding maximum cost
paths appears to be exponential. Finding an eulerian cycle is quadratic,
but finding a hamiltonian cycle appears to be exponential. Why such a
big difference? This mystery will have to wait until chapter seven. In the
next chapter we turn out attention to the province of numbers.

Endnotes
Computational Ideas
Data abstraction, modularization, separation of concerns, information hid-
ing, touch-based model, dynamic structures, dynamization, depth-first
exploration, breadth-first exploration, priority-first exploration, topological
sort, greedy strategy, problem reduction.
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Definitions
"* dictionary: A dictionary supports Insert, Delete, and Find.

"* queue. A queue supports Insert and Get-Oldest.

"* stack: A stack supports Insert and Get-Youngest.

"* priority queue. A priority queue supports Insert and Get Largest (or
Get-Smallest).

"* mergeable queue: A mergeable queue supports Insert, Get Largest,
Create, and Union.

" partition: A partition supports Union and Find Structure.

" heap: A heap is an implementation of a priority queue using a binary
tree. This tree may be implicit or explicit.

" graph., A graph is a collection of relations between things; the things
are represented by nodes and the relations between them are repre-
sented by edges joining the nodes.

" isomorphic graphs: Two graphs are isomorphic if there is a relation-
preserving mapping between their nodes. G1 and G 2 are isomorphic
if there is a bijective function f such that for all nodes i and j in G1 ,
i is related to j in G1 if and only if f(i) is related to f(j) in G2.

" subgraph: A subgraph of G is a graph whose nodes are a subset of
G's nodes, and whose edges are a subset of G's edges.

"property P component: A property P component of G is a largest
subgraph of G with property P. For example, a connected compo-
nent is a largest subgraph that is connected.

" path: A path in G is a sequence of edges of G connecting successive
related nodes.

"* connected graph: A graph is connected if every pair of nodes is joined
by a path.

"* complete graph. A graph is complete if there is an edge between

every pair of nodes in the graph.

"* network: A network is a graph with numbers on the edges.

"* indegree." The indegree of a node in a digraph is the number of nodes
that point to it.

" outdegree: The outdegree of a node in a digraph is the number of
nodes it points to.
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" degree: The degree of a node in a graph is the number of nodes it is
related to.

"* cycle: A cycle in G is a path in G such that no edge appears more
than once and the first and last edges meet at the same node. In
undirected graphs the cycle must connect at least three nodes. In
directed graphs the edges of the cycle must have the same sense.

"* hamiltonian cycle: A hamiltonian cycle of a graph is a cycle connect-
ing all nodes in the graph such that each node except the start node
appears once only.

"* eulerian cycle: An eulerian cycle of a graph is a cycle connecting all
nodes in the graph such that each edge appears once on!y.

"* hamiltonian graph: A hamiltonian graph is a graph that has a hamil-
tonian cycle.

"* eulerian graph: An eulerian graph is a graph that has an eulerian

cycle.

"* cyclic graph: A cyclic graph contains at least one cycle.

"* acyclic graph: An acyclic graph contains no cycles.

"* tree. A tree is a connected acyclic graph.

"* spanning tree. A spanning tree of G is a subgraph of G on all the
nodes of G that is a tree.

"* dag: A dag is a directed acyclic graph.

"* root of a digraph: A root of a digraph is a node of indegree zero.

"* leaf of a digraph: A leaf of a digraph is a node of outdegree zero.

Notation
"* A u B = the set of things in A or in B.

"* A \ B = the set of things in A that aren't in B.

Tools

"* Every dag has at least one root and at least one leaf.

"* Every tree with n nodes has n - 1 edges.

"* Every tree is minimally connected.

"* Every tree with n > 3 nodes has at least two, and at most n - 1,
leaves (degree one nodes).
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Notes
The telephone problem and the motivation for the information broadcast
problem were suggested by chapter five of Computer Networks, Andrew
S. Tanenbaum, Prentice-Hall, second edition, 1988. The arpanet is named
from its sponsor, DARPA: the U.S. Defense Advanced Research Projects
Agency.

Partitions are also called disjoint set structures and union-find structures.
A cheapest spanning tree is usually called a minimum spanning tree. A
cheapest path is usually called a shortest path.

Hamilton was not the first to study what are now called hamiltonian
graphs; he was preceded by Thomas Kirkman, an amateur mathematician.
Euler solved the K6nigsberg bridges problem in 1736. K6nigsberg, for-
merly a Prussian city, is now Kaliningrad, a Russian naval station. Inciden-
tally, David Hilbert, a famous mathematician who plays a pivotal role in
chapter seven, was born in Konigsberg in 1862.

Binomial queues, the invention of Jean Vuillemin, first appeared in "A
Data Structure for Manipulating Priority Queues," Jean Vuillemin, Commu-
nications of the ACM, 21, 309-315, 1978. For a detailed analysis see "Imple-
mentation and Analysis of Binomial Queue Algorithms," Mark R. Brown,
SIAM Journal on Computing, 7, 298-319, 1978.

The ideas behind the two cheapest spanning tree algorithms were first
described in "Shortest connection networks and some generalizations," R.
C. Prim, Bell System Technical Journal, 36, 1389-1401, 1957, and "On the
shortest spanning subtree of a graph and the travelling salesman problem,"
J. B. Kruskal, Proceedings of the American Mathematical Society, 71, 48-
50, 1956. The idea behind the cheapest paths algorithm was first consid-
ered in "A note on two problems in connexion with graphs," E. W. Dijkstra,
Numerische Mathematik, 1, 269-271, 1959.

Exercise 11, page 352, is from "An Optimal Algorithm for Sink-Finding,"
K. N. King and B. Smith-Thomas, Information Processing Letters, 14, 109-
111, 1982. Problem 6, page 353, was suggested by "Min-Max Heaps and
Generalized Priority Queues," M. D. Atkinson, J.-R. Sack, N. Santoro, and
Th. Strothotte, Communications of the ACM, 29, 996-1000, 1986. See also
"A Note on the Construction of the Data Structure 'Deap'," S. Carlsson,
J. Chen, and Th. Strothotte, Information Processing Letters. Problem 7,
page 353, was suggested by Joe Culberson. Problem 8, page 353, was sug-
gested by "Amortized Efficiency of List Update and Paging Rules," Daniel
Sleator and Robert Endre Tarjan, Communications of the ACM, 28, 202-208,
1985. For further references related to problem 9, page 354, see "Implicit
Data Structures for Fast Search and Update," J. Ian Munro and Hendra
Suwanda, Journal of Computer and System Sciences, 21, 236-250, 1980.
The name "beap" for bi-parental heap was coined by Edward L. Robertson.
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Problem 10, page 354, was suggested by "A Class of Algorithms which
Require Nonlinear Time to Maintain Disjoint Sets," Robert Endre Tarjan,
Journal of Computer and System Sciences, 18, 110-127, 1979. Problem 11,
page 354, is from "Developing Implicit Data Structures," J. Ian Munro,
Mathematical Foundations of Computer Science, Proceedings 1986, J.
Gruska, B. Rovan, and J. Wiedermann (editors), 168-176, Springer-
Verlag, 1986. For references related to problem 12, page 354, see "Quick
Gossiping by Conference Calls," Akos Seress, SIAM Journal on Discrete
Mathematics, 1, 1, 109-120, 1988. Research problem 3, page 356, was
suggested by Ricardo Baeza-Yates.

Further Reading
For a thorough introduction to structures and their use in graph algorithms
see Data Structures and Network Algorithms, Robert Endre Tarjan, The
Society for Industrial and Applied Mathematics, 1983. For more on the
design of dynamic data structures (for multi-dimensional dictionaries) see
The Design of Dynamic Data Structures, Mark H. Overmars, doctoral dis-
sertation, University of Utrecht, 1983. Also see the first half of Data Struc-
tures and Algorithms: Volume 3, Multi-Dimensional Searching and Compu-
tational Geometry, Kurt Mehlhorn, Springer-Verlag, 1984.

For a well-written introduction to elementary structures and their analysis
see Data Structures in Pascal, Edward M. Reingold and Wilfred J. Hansen,
Little, Brown and Company, 1986. For a more recent introduction see
Fundamentals of Data Structures in Pascal, Ellis Horowitz and Sartaj Sahni,
Computer Science Press, third edition, 1990.

For an introduction emphasizing abstract data types see Data Structures
with Abstract Data Types and Pascal, Daniel F. Stubbs and Neil W. Webre,
Brooks/Cole, second edition, 1989. For a more formal introduction to
abstract data types see Abstraction and Specification in Program Devel-
opment, B. Liskov and J. Guttag, MIT Press, 1986. Many recent program-
ming languages implement abstract data types as independent objects; such
languages are called object-oriented, since programs tend to be more data-
driven (that is, we can think of the data as an active agent).

For a presentation of many structures, including advanced ones, see
Algorithms and Data Structures: Design, Correctness, Analysis, Jeffrey H.
Kingston, Addison-Wesley, 1990, and Introduction to Algorithms, Thomas
M. Cormen, Charles E. Leiserson, and Ronald L. Rivest, McGraw-Hill/MIT
Press, 1990.

For a recent survey of progress on partitions see "Data Structures and
Algorithms for Disjoint Set Union Problems," Zvi Galil and Giuseppe F.
Italiano, Computing Surveys, 1991. For recent work on the cheapest span-
ning tree problem and on the cheapest path problem see "Fibonacci heaps
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and their uses in improved network optimization algorithms," Michael L.
Fredman and Robert Endre Tarjan, Journal of the ACM, 34, 596-615, 1987.

For a gentle introduction to elementary graph theory see Graphs and
Their Uses, Oystein Ore, The Mathematical Association of America, 1963.
For a more advanced introduction see The Theory of Graphs and Its Appli-
cations, Claude Berge, Wiley, 1962. One area of graph theory research
important for computer science is random graph theory. For an amus-
ing advanced introduction see Graphical Evolution, Edgar M. Palmer, John
Wiley & Sons, 1985. For a more recent update see Ten Lectures on the
Probabilistic Method, Joel Spencer, The Society for Industrial and Applied
Mathematics, 1987.

Communications nets are endlessly fascinating. To learn more see Com-
puter Networks, Andrew S. Tanenbaum, Prentice-Hall, second edition,
1988, and Data Networks. Concepts, Theory, and Practice, Uyless Black,
Prentice-Hall, 1989. For an example of security issues for computer nets
see the very readable The Cuckoo's Egg, Clifford Stoll, Doubleday, 1989.
See also Computers Under Attack: Intruders, Worms, and Viruses, Peter J.
Denning (editor), Addison-Wesley, 1990.

Questions
I do not fancy this acquiescence in

second-hand hearsay knowledge; for,
though we may be learned by the

help of another's knowledge, we can
never be wise but by our own wisdom.

Michel Montaigne, Essays: Of Pedantry

SExercises]

1. Show that Fn/21 Ln/2] = [n 2/4j.

2. A k-ary tree is a tree in which every internal node has exactly k chil-
dren. Show that a k-ary tree with n nodes has (k - 1)(n - 1) + k
leaves.

3. Find the path length of a height m binomial tree.

4. Suppose elements are orderable. Consider a sorted one-dimensional
array. Here Find-Smallest, Find Rank, and Find Largest are constant,
and Find, Find-Next, and Find-Last are at worst logarithmic. Now
we want to add the operation Split to the menu. (See table 5.1,
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page 313. ) This is easy if we allow pointers. After a sequence of
Splits, the original monolithic sorted array has broken up into a col-
lection of disjoint sorted arrays, with pointers showing where each
begins and ends.

(a) Does the new structure support Find-Largest?

(b) Does the new structure support both Insert and Union?

5. Design a structure supporting Insert, Delete, Find, and Find Rank, all
in logarithmic time and linear space.

6. A rooted binary tree is half-balanced if every node either has two
children or no children, and for every node the length of the longest
path from the node to a leaf is at most twice the length of the shortest
path from the node to a leaf.

(a) Show that a half-balanced tree has logarithmic height.

(b) Call a binary tree 1/k-balanced if the ratio between the longest
and shortest path as above is at most k. What is the height of a
1/k-balanced tree?

7. Show that left-complete heaps do not support Find.

8. Call an ordered binary tree a right-heap if for every node both it and
its left child are less than its right child.

(a) Does this structure support Find-Largest?

(b) This shows another way (besides heap-order) to organize the
data in the nodes of an ordered binary tree. If every node has
the same relation to its children as every other node, show that
there are nineteen relations on ordered binary trees.

9. Show that if the costs are distinct then there is only one cheapest
spanning tree.

10. Show that an even number of people will shake hands an odd number
of times today.

11. Among n people, a celebrity is someone who everyone knows but
who knows no one. To identify a celebrity, if one exists, you are
allowed to ask questions of any of the n people, but only of the form:
"Excuse me, do you know that person over there?" Assume that all
answers given are correct. Minimize the number of questions you
need to ask to determine the celebrity, if one exists, or to determine
that no celebrity exists in a given set of n people.

12. (a) Show that a connected graph is eulerian if and only if all its
nodes have even degree.
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(b) Develop an algorithm to find an eulerian cycle in an arbitrary
graph, if it has one.

13. Show that the complete graph on n nodes has (n - 1)!/2 hamiltonian
cycles.

14. Show that

n 2f(n) = (n2 - 1)f(n - 1) + 2(n - 1) => f(n) = 2n + 1Hn - 4
n

[Problems]

1. Given n nodes linked in a chain, adding one edge to form a cycle
roughly halves the maximum distance between any two nodes. How
many edges do you have to add to halve the maximum distance (the
diameter of the graph) again?

2. A digraph is strongly connected if every pair of nodes is joined by a
directed path.
Use depth-first exploration to find the strongly-connected components
of a digraph.

3. An articulation node of a graph is a node whose removal discon-
nects the graph. A graph with no articulation nodes is biconnected;
to disconnect it we must remove at least two nodes.
Use depth-first exploration to find the articulation nodes of a graph.

4. Develop an 0(n+1) algorithm to find the single source cheapest paths
in a dag.

5. Show that binomial queues can be made to support Delete.

6. Design an implicit structure supporting Insert, Get-Largest, and Get-
Smallest, all in logarithmic time.

7. Describe an implementation of a structure supporting the following
two operations on a set of real numbers in logarithmic time: insert
two numbers and delete the (or a) pair of numbers that are closest
in value.

8. Suppose we maintain pointers to both the beginning and the end of
a linked list so that we can shift an element to either end of the list
in constant time. Further suppose that Finds always start from the
beginning of the list. Now we do the following sequence of opera-
tions starting with an empty list:
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Insert ( xl , Insert ( X2 )...Insert ( xn ,

Repeat m times: Find(xj), Find(x 2 ), ... , Find(x,).

Compute the total cost of this sequence if after an element is found
it is

(a) moved to the beginning of the list,

(b) moved to the end of the list.

9. A beap is a bi-parental heap: a child may have up to two parents and
each parent may have up to two children. Each node is larger than
its children, if any. (See figure 5.22. )

(a) Show how to implement a beap implicitly in a two-dimensional
array so that it supports Insert, Delete, Find, Get Largest, and
Get-Smallest all in O(vH) time and no extra storage.

(b) Can any of these times be improved without using more storage?

Figure 5.22 A beap

10. Consider the following recurrence

r 0 n=1
f(n)= max {[lgkj+l+f(k)+f(n-k)} n>1

1 <k<•Ln/2j

(a) Show that f = E(n).

(b) Find f(n).

11. Develo? an implicit structure supporting Insert, Delete, and Find all
in O(lg n) time.

12. n theorists want to swap gossip. If every phone call is between two
theorists, and if when two theorists talk they swap all the gossip they
each know, what is the least number of calls necessary for everyone
to know everything?

13. Consider a set merging process that starts with n singleton sets and
does n - 1 merges. Let the cost of a merge be the size of the smaller
set merged. Are the following two cost maximizing policies the same?
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(a) Merge any set whose size is a power of two with any set of equal
or smaller size.

(b) Merge any two sets whose sizes differ by at most one.

14. Prove the bounds on the implementation combinations shown in
table 5.5. (Note: these are not bounds on the problem.) For
example, for the third implementation first prove that 0 (n lg n) is an
upper bound, then prove that for some constant c and for arbitrarily
large n, there exist sequences of Union and Find-Structure operations
requiring cn lg n steps.

Strategy Bounds

Union Find Upper Bound Lower Bound

unweighted uncompressed O(n 2 ) Q(n 2 )

unweighted compressed 0(n 3/ 2) fQ(n lg n)

weighted uncompressed O(n lg n) Q(n lg n)

weighted compressed O(n lg* n)

Table 5.5 Bounds on four implementations of partitions

FResearch]

1. Consider the partition problem. The strategy of always choosing to
make the elements of the smaller of the two sets elements of the larger
set forces us to devote linear space just to record set sizes. What is
the performance of a randomized implementation of Union that flips
a coin to decide which set to union to the other?

2. Given a digraph, how hard is it to identify those nodes whose label
is invariant over every topological ordering of the digraph? In a
sense, these nodes are the most critical ones, since the whole order-
ing depends on them.
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3. The following recurrence occurs in the analysis of the number of
binary trees with a certain property, can you solve it?

f~)= 1 n=O0

f(n)= f(n-1)+ f([n/2]) n >0

4. A binary search tree is a binary tree where the value of each node
is greater than the value of its left child and less than the value of its
right child. Usually a binary search tree deletion algorithm replaces
the deleted node with the largest node in its left subtree. Instead,
suppose we first flip a coin and either replace the node with the
largest node in its left subtree, or with the smallest node in its right
subtree. Can the tree become significantly unbalanced with this ran-
domized deletion algorithm?



NUMBERS

There's safety in numbers.

Proverb

KN THIS chapter we concentrate on problems connected with numbers.
Problems like these: How hard is it to raise a number to an integer

power? To find common factors of two integers? To tell whether an integer
is prime? To get the factors of a composite integer? To generate a random
integer? To multiply two integers?

These problems involve all the digits of an integer, so we usually can't
use a floating-point approximation. Further, the numbers may have hun-
dreds of digits, but contemporary computers handle only a dozen digits
directly in hardware. So we have to do arbitrary precision arithmetic in
software (numerical analysis worries about errors caused by fixed preci-
sion). This means two things. First, addition, subtraction, multiplication,
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and division are no longer cheap since their costs increase with the num-
ber of digits of their arguments. Second, we should change our model
and measure an input's "size" by the number of digits needed to represent
it. Since computers are binary and the number of decimal digits is just a
constant multiple of the number of binary digits, let's use the number of
binary digits as our new measure of input "size." This is the bit-cost model.

P s What's the constant multiple?

In previous chapters we agreed to estimate the difficulty of inputs by
their size; previously, larger inputs meant more work in the worst case.
How do we define the worst cost of a problem (and lower bounds on
the problem) when the cost depends on divisibility properties of n? For
example, consider testing n for primality by trying to divide by all smaller
numbers. If n is even then after only one trial division we know that n is
not prime-unless it's two. If n is divisible by three we halt after two trial
divisions. In general, this algorithm's run time is not non-decreasing in n.
Again, suppose we want to find the number of times two divides n. The
run time of the obvious algorithm solving this problem is also not non-
decreasing in n; it is low for odd numbers, and high for powers of two.

The difference with previous problems is that input size is an additive
property; previously for all n > m there was always an input of size n
at least as hard as every input of size m. However when multiplicative
properties of n matter, mere size can be irrelevant; if we're factoring, even
numbers are easier than odd numbers; if we're finding the number of times
two is a factor, even numbers are harder than odd numbers. Unfortunately
we don't know the factors of n beforehand. Fortunately, if instead of think-
ing of individual inputs, we think of all k-bit inputs then, in general, the
difficulty of the problems increases as k increases, as expected. All the
usual intuitions hold once we stop talking about inputs of size n, and talk
about inputs of length k (= [lg nI ). Ideally, multiplicative problems on
integers should have instances measured by their factorizations, since that
will most influence algorithm cost. This is the first, but not the last, time
that we ask ourselves: How hard is factoring?

In sum, in this chapter four things are different:

"* arithmetical operations are no longer cheap,

"* there is only one instance of value n,

"* there are 2 k instances of length k,

"* the size of an instance of value n is the length of n in binary, and
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s the cost to solve a problem on an instance of value n may decrease
when n increases in size, but will, in general, increase when n
increases in length.

In this chapter we will have to tussle with number theory; don't be afraid
of the symbols. For example,

Vn, ((em : n=2mVn=2m+1)A-A(ým,k : n=2mAn=2k+1))

simply says that every integer is either even or odd. (A means "and," V
means "or," and - means "not.") Mathematics is no more about symbols
than mountain climbing is about ropes. Symbols only help us get to our
goal-they can neither do the job for us nor are they indispensable-we
could do without them, but the climb would be much harder.

6.1 Exponential Numbers

I have yet to see any problem, however
complicated, which when you looked at it

in the right way, did not become still
more complicated.

Poul Anderson, Call Me Joe

Not all of the elementary operations we learned as children are optimal.
How best can we evaluate mn through a sequence of multiplications? Sup-
pose the sequence of products we produce in generating mn is M1 , M2 ,
... ýnk. One sequence generating mn is m, mi2 , mi3 , ... , mn. This
takes n - 1 multiplications. Can we reduce the number of multiplications?

How can we reduce mn to a simpler problem? It doesn't seem to help
if we relate mn to kn for some k < mi; we can use the binomial theorem,
but that means more than n -1 multiplications. But we can easily relate m n

to mk for some k < n. If n is even, mn is the square of mn/ 2 . So if n
is even, find mn12 then square it. If n is odd, find m Ln/2J, square it, and
multiply by m. In other words

mn= 1 n =0

m 2Ln21 x mrimod2 n > 0

This is algorithm 6.1.
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POWER (base,power)
{ Compute basepower
power > 0 is an integer. }

if power = 0
then

return 1
else

half +- POWER(base, [power/2J)

half -- half 2

if power is odd then half +- half x base
return half

Algorithm 6.1

POWER finds mn in O(lg n) multiplications since the recurrence counting
the number of multiplications is

f() 0 n=l1

f(n)={ ([n/2J) + 1 + n m od 2 n > I

which has solution
f(n) = [lgnj + 3(n) - 1

Here 3(n) is the number of ones in the binary representation of n, and
is no more than Llgnj + 1 (see table 6.1). So finding powers can be
solved in a linear number of multiplications,1 where "linear" means linear
in [lg(n + 1)1, the length of the input, n.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[lgnJ + 3(n) - 1 1 2 2 3 3 4 3 4 4 5 4 5 5 6

Table 6.1 Number of multiplications sufficient to find powers

Paus Why isn't f a function of n and m?

1Note that using the standard multiplication algorithm, each multiplication is quadratic in the
length of the input (initially [lg(n + 1)] ). This can be improved asymptotically.
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This algorithm is either the oldest or second oldest in this book; it was
known to the Indians more than two millenia ago and, in a related form, to
the Egyptians almost four millenia ago. Later we'll see that this algorithm
turning an exponential solution (n - 1 multiplications) into a linear solu-
tion (2 Llg nJ multiplications) is at the heart of an important cryptographic
system.

If m changes and n is constant over a number of runs then it's worthwhile
to find the cheapest way to raise a number to the power n. So what's the
smallest number of multiplications necessary to find the nth power? Well
consider n = 15. POWER finds m 15 in six multiplications, but looking at
table 6.1 we see that we can do it in five since we can find M 5 in three
and can cube that in two more.

mi15 = mr3 x5 . (mr3 ) 5 = (M 5) 3

This is the same idea that we used in chapter three, when finding the best
algorithm for the largest and smallest (page 185). The difference is that
there we wanted the sum of the costs of two previous numbers and now
we want the product of the costs of two previous numbers.

And this leads us to the factor algorithm: factor n then look at all pos-
sible ways to complete a multiplication from the combinations of factors.

In general we can build addition chains. An addition chain is a sequence
of exponents starting with 1 such that every exponent in the sequence is
the sum of two previous exponents in the sequence. Table 6.2 lists all
powers reachable in seven multiplications.

k Powers
0 1

1 2
2 3 4

3 5 6 8

4 7 9 10 12 16

5 11 13 14 15 17 18 20 24 32

6 19 21 22 23 25 26 27 28 30 33 34 36 40 48 64

7 29 31 35 37 38 39 41 42 43 44 45 46 49 50 51

52 54 56 60 65 66 68 72 80 96 128

Table 6.2 Powers computable in exactly k multiplications



362 6 NUMBERS

The binary algorithm is optimal for those n where 3(n) 5 3. But n =
15, 23, 39, and 135, show that the binary algorithm is not optimal when
3(n) = 4. Alas, the factor algorithm is not optimal either-the smallest
counterexample is n = 33. Further, it's natural to guess that squaring,
whenever it's possible, is the only thing to do. Even this is false! When
n = 191, 701, 743, and 1111, n costs the same as 2n. It is possible to
show that finding the optimal addition chain is AfiP-complete (a term we'll
meet in the next chapter) suggesting that the problem is probably difficult.
This is a hard problem!

The factor algorithm shows that factoring the input would be beneficial.
Again we're faced with the problem: How hard is factoring?

6.2 Common Numbers
Life is a country that the old have seen,
and lived in. Those who have to travel

through it can only learn from them.

Joseph Joubert

The largest common factor of two positive integers is the largest integer
that divides both numbers exactly. So, the largest common factor of 12
and 6 is 6, the largest common factor of 12 and 7 is 1, the largest common
factor of 12 and 8 is 4.

Finding the largest common factor of n and m is conceptually easy. We
know from the unique factors theorem that every integer greater than one
is uniquely expressible as a product of primes raised to integer powers.
That is, for all n > 1 there exist unique integers nl, n2, .... such that

n = 2n3 n2 5n37n411n...

That mathematical busybody, Carl Friedrich Gauss, was the first to find
a correct proof of this, the most fundamental of all theorems in arith-
metic. Gauss proved the theorem in his thesis Disquisitiones Arithmeticae,
in 1801.

From this theorem we know that the largest common factor of n
and m is

2 min(ni,ml )3 min(n 2 ,m 2) 5 min(n 3 ,m3 )7 min(n,,m4) ...

where the mis are the powers in the unique factorization of m. So we
need only factor n and m and find the smaller of the two powers for each
common prime factor. Again there is that pesky problem: How hard is
factoring? Assuming factoring is hard, is there a cheaper way?

P e Any ideas?
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Suppose n > m. What can we say about the largest common factor
of n and m? Well, if m = 0 the largest common factor is n; if m = 1 the
largest common factor is 1; and if m divides n the largest common factor
is m. Finally, if both n and m are even then so is their largest common
factor, and, if one or both are odd then so is their largest common factor.

Pause Can you generalize these observations?

If k divides both n and m then it divides n - m, because if k divides
both then n = ak and m = bk for some constants a and b and, therefore,
k divides n - m = (a - b)k. So if f(n, m) is the largest common factor
of n and m then

Sn m=0

m n=0

f (n, m) = 1 n or m 1

f(n - m,m) n > m > 1

f(n,m - n) m > n > 1

This function will keep subtracting the smaller argument from the larger
argument until hitting a boundary. (See figure 6.1.)

(5,8) (13,8)

m

(2,3) (5,3)

(2,1)

n

Figure 6.1 Finding the largest common factor of 13 and 8

Pause Must it hit a boundary?

We can do the same thing more quickly by just dividing m into n and
finding the remainder. For all n and m there exist k and I such that

n=km+l where m>1>0

k is the quotient and 1 is the remainder of the division. (See figure 6.2.)
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As we saw in the analysis of jump search (section 2.2, page 98), this is
just another way of writing

n = [n/mjm + n mod m

So it must be that

f(n,m) =f(m,l) =f(m,n mod m)

and now we have the nice condition that the first argument is always at
least as large as the second.

n

(k- 1)m km (k + 1)m

Figure 6.2 The quotient and remainder of n divided by m

Pause Why?

Also, if m divides n exactly, that is, if I = 0, then f(m, 1) = m. So we
can simplify the recurrence considerably to

f(n,m) n m=0
S= (m,n mod m) m > 0

And this leads directly to an algorithm (algorithm 6.2).

LARGEST-COMMONACTOR( n, m )

{ Find the largest common factor of n and m.
n>m>O. }

ifm=0
then return n
else return LARGEST-COMMON-FACTOR ( m, n mod m)

Algorithm 6.2

This elegant algorithm is credited to that great Greek compiler of math-
ematics in antiquity, Euclid, although there is evidence that it dates from
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at least a century before his time. Being more than two millenia old, it is
one of the oldest non-obvious algorithms known.

LARGEST-COMMONFACTOR (algorithm 6.2) seems tricky to analyze. We'll
eventually reach a boundary case since we're continually reducing both
arguments, and since they are always non-negative integers we will even-
tually reach zero. But how long does it take? (See figure 6.3. ) Well,
what does the algorithm do? We start with n and m and reduce the prob-
lem to m and n mod m. Then we reduce that to n mod m and m mod
(n mod m). If n > m, how big is n mod m relative to n?

13
12

11
10 5
9
8 U 4
7

6 U 3
5
4 U 2
3

2U

0 0i--' 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 6.3 Number of divisions for small n and m

P e Try to relate the two.

For all x > 1, 2[xJ > x since, if x > 1 then,

2[xj _ LxJ + 1 > x > Lxj

Therefore

n > m ==> n/m > 1

:= 2[n/mJ > n/m

:=• m m[n/mnj > n/2

== n - n/2 > n - m[n/mJ = n mod m

= n/2 > n mod m
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So in two iterations we have more than halved the first argument! And this
is true for every two subsequent iterations. So we will stop after no more
than about 2 Ig n iterations.

Looking at table 6.3 we might guess that the largest number of iterations
occurs when n is a fibonacci number (the largest values are boxed). This
is true! It is possible to show that we do the largest number of divisions
when m and n are consecutive fibonacci numbers. And the worst number
of iterations is

[log, v5-n1 - 2

where O = 1.618... is the golden ratio.

n 1 2 3 4 5 6 7 8 9 10 11 12

max ] [W F3W 3 W] 3 4 F51 4 4 5 5

n 13 14 15 16 17 18 19 20 21 22 23 24

max F-] 5 5 5 5 6 6 5 [7 5 6 5

Table 6.3 Maximum number of divisions for small n

6.3 Prime Numbers
Pure Mathematics... need not really be

concerned with the application of theory.
There is no danger that someone will
construct a rapidly converging Euler-

Maclaurin series and threaten to destroy
the world with it.

Richard G. Hamlet,
Introduction to Computation Theory

Finally we face the central problem squarely: How hard is it to factor a
number or to find primes? The theory of primes is part of number theory,
the study of the properties of integers. Perhaps the oldest, and most pres-
tigious, branch of mathematics, number theory used to be the most pure
of pure mathematics.

The simplest way to test whether n is prime is by the sieve algorithm:
try to divide n by all numbers up to Ly/n (see figure 6.4). This algo-
rithm goes back at least to Eratosthenes, a remarkable Greek astronomer
and poet, who more than two thousand years ago calculated the earth's
circumference to within two percent of its real value.
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1 2 3 4 5 1 2 3 4 5

6 7 8 9 10 fe" 7 X 9 1,0

11 12 13 14 15 E 11 1 13 14 15

16 17 18 19 20 16 17 1 19 ?A

21 22 23 24 25 21 2 23 ?4 25

1 2 3 4 5 1 2 3 A 5

• 7 , • -10 X; 7 X -91 1,0
11 W• 13 14S1 •Z 11 W• 13 14 1-5

1,6 17 A, 19 20 1,6 17 A, 19 230

24 2 23 34 2,5 24 2 23 34 25
Figure 6.4 Panning for primes

P Assume that it takes k microseconds to divide two k-digit numbers.
Roughly how long will the sieve take to find the 1,065-digit prime in
figure 6.5?

The sieve can use up to [V/n~j - 1 divisions, so in the bit-cost model its
worst cost is exponential in the length of the input ( [lg(n + 1)] ) since

Lv/-n-J - 1 = Q(V/2,n) . Q'((,/2)lgn)

Now consider the related problem of finding the number of times two
divides n. This problem can be solved by a similar algorithm (try to divide
by two, then four, and so on). But we can easily find the number of
times two divides n by counting the number of trailing zeros in the binary
representation of n (this begs the question of how we get such a repre-
sentation). So if we have n in binary, finding the number of times two
divides it is linear in the length of n.

Long Pause] If n is in trinary, powers of three factors are easy to find. How hard are
they to find if n is in binary?

Is there a polynomial time primality test? That is, is there a polynomially
checkable pattern to the primes? More exactly, is there some property of
the representation of n that we can test in polynomial time that will be
true if and only if n is prime? Well we don't know, but if we're willing to
give up certainty we can test for probable primality with polynomial cost.
But first we need some terms from number theory.
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(23539 + 1)/3 =

73796098201307225171782711424752769966406992611066
19267611608939891718261411195219291019313693834909
82766847861989655122674917393968130587829514313057
96489726066660396601455113545487696032021613786047
39678190791265595837888230533183069353598614418373
66855882806862688379176110552962626629416447849146
63043127327299572416775873260328538318677775758573
88313348767693230454881593789029774677138375143104
34260339455526629562477584638188948029810999272419
75469249961920962300161327832415657918219483072464
13064371974422537588315069791917933521235759000780
74622075861772974340085081499946707336416327925893
77144627990269571823358464168616611706888054984712
67236930944512264656164534699162419633046314148665
52321857691895960230071117582088132687611887380755
93564976176900029491437349453342290468209106578697
95686757670121149406155031547246128512609768035885
66734355505597767200432478724025353578867345462382
93142036593310331175158539571544734560818933417814
36048539882490795869343661381353636091810141863994
26964456547292271975820619495426338199733732972086
304686486497963

Figure 6.5 A big prime

Number Theory

If n divides a - b let's denote that fact using the symbol as follows:

a b (modn)

Modulo a multiple of n, a and b are the same; that is, a and b leave the
same remainder on division by n. So, for example,

12 - 0 (mod2) 13 ý- 28 (mod3) 14- 6 (mod4)

If n is an odd prime and m and a are less than n then a is a modular
square root of m modulo n if

m -=a2 (modn)
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Whenever such an a exists, m is a modular square modulo n. Every
modular square has at least two modular square roots. From this we can
show that for every odd prime n, exactly half the numbers from 1 to n - 1
are modular squares modulo n.

If
m - ab (modn)

then b is the base a modular logarithm of m modulo n. We can find ab

modulo n efficiently with MODULAR-POWER (algorithm 6.3). But there is
no known way to easily find b given ab modulo n. Similarly, generating
modular squares is easy, but there is no known way to easily find modular
square roots.

MODULAR-POWER ( base,power, modulus)
{ Compute base power mod modulus.
power > 0 is an integer; modulus > 1 is an integer. }

if power = 0
then

return 1
else

half -- MODULAR-POWER (base, [power/2], modulus)
half -- half

2

if power is odd then half ,- half x base
return half mod modulus

Algorithm 6.3

Two numbers are coprime if their only common factor is 1 (so their
largest common factor is 1). Let V)(n) be the number of positive integers
less than, and coprime to, n. This is the totient ("toe-shent") function.
The great Irish algebraist William Hamilton derived the name from the Latin
tot (so many), by analogy with quotient, which is from the Latin quot
(how many).

The Euler-Fermat theorem states that for every coprime n and m

m(n) - 1 (modn)

Now if n is prime then all n - 1 smaller numbers are coprime to it, so
0b(n) = n - 1. So if n is prime then for all m $ n

mn-1 = 1 (modn)

That is, if n is prime then for all smaller m, mn- 1 is one more than a
multiple of n. This special case is called Fermat's theorem. The French
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mathematician Pierre de Fermat stated this special case in 1640, and the
Swiss mathematician Leonhard Euler proved it in 1736. Euler proved the
general theorem in 1760.2

It might seem reasonable to use Fermat's theorem to test whether n
is even. Unfortunately a few numbers fake being prime with respect to
this test for every m. The Carmichael number n is composite, yet for
every m < n, m" 1 is one more than a multiple of n. The first three
Carmichael numbers are: 561 = 3 x 11 x 17, 1105 = 5 x 13 x 17, and 1729 =
7 x 13 x 19. These numbers are named after the American mathematician
Robert Carmichael who pointed them out in 1909.

A special case of the following theorem was known to the Chinese
mathematician Sun TsOi perhaps two millenia ago; Euler proved the
general result in 1734. The Chinese remainder theorem states that if
ni, n 2 , . . . , nk are all pairwise coprime, then the k linear congruences

m -a (modni), m a 2 (modn 2 ), ... , m ak (modnk)

are simultaneously solvable and the solution is unique modulo nl x n 2 x
•.x n k. We can prove this theorem by induction on k.

Building on work going back to 1792 by three mathematicians-the Ger-
man Carl Friedrich Gauss, then the French Adrien-Marie Legendre, then
the Russian Pafnutii ieby~ev-in 1896 the French mathematician Jacques
Hadamard and, independently, the Belgian mathematician Charles de la
Vall~e Poussin, proved the prime number theorem. The prime number
theorem states that the number of primes less than n grows like

n

In n

So for large n the average distance between two consecutive primes near n
is roughly Inn. (See table 6.4. )

In 1940, improving on earlier results by Cebykev, then the English math-
ematician G. H. Hardy and the Indian mathematician Srinivdsa Ramanujan,
the Hungarian-born stateless mathematician Paul Erd6s and the Polish-born
American mathematician Mark Kac proved the prime factors distribution
theorem: Let f(m) be the number of different prime factors of m, then
for all r

lim 1 <n : f(m)<lnlnm+r, } r e -r
n {o m n n = .2 efx0/2dx

(Here JAI means the size of the set A. ) So for large n, on average, n has
about In In n different prime factors with a standard deviation of On In n.

2An amateur mathematician, Fermat is famous for one outstanding unsolved problem: Is it

true that for all n > 2 there are no solutions to the equation kV + ln = mn. Although
unproven, this belief is called Fermat's last theorem.
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n 7r(n) 7r(n)ln n/n

101 4 0.92103

102 25 1.15129
103 168 1.16050

104 1229 1.13195
105 9592 1.10431
106 78498 1.08448
107 664579 1.07117

108 5761455 1.06129
109 50847534 1.05372

1010 455052512 1.04779

Table 6.4 An approximation to the number of primes

Finding Primes Probabilistically

We want to tell whether n is prime and we're willing to settle for a proba-
bilistic algorithm (one that is only probably correct). Recall Nelson Cole's
feat from chapter one (page 54):

267 - 1 = 193707721 x 761838257287

Either of these two factors certify that 267 - 1 is composite. Given either
number we can tell that 267 - 1 is composite just by dividing. But to test n
for primality we want "primality certificates:" numbers that attest to n's
primeness with cheap checking. Do we need LX/-n] - 1 such certificates
before we can decide that n is prime?

By the prime number theorem the primes are distributed as I/In n so
our test could be to just say that n is composite! For large n this algorithm
is almost always right. But, you object, this test is independent of n; for
every prime n it will be always wrong.

So how about this: with probability 1/In n say that n is prime. This
algorithm is dependent on n, and for large n it is almost always right.
But, you complain, although this algorithm depends on the size of n, it
doesn't depend on any divisibility properties of n.

So how about this: pick an m at random from the range 2 to [fV-n]
and try dividing m into n. If m divides n then say that n is composite
(and m is a factor), otherwise say that n is prime. But, you protest, this
isn't a good idea; even when n is composite, m will almost always not
divide n unless n has very many factors. And when n has many small



372 6 NUMBERS

factors it's easy to factor directly! Further, even if m is prime, chances are
that m won't divide n. Finally, finding random primes is probably at least
as hard as testing whether n is prime.

So how about this:3 pick an m < n at random and test whether m is
coprime to n. This is fast with LARGEST-COMMON FACTOR. But, you wail,
this algorithm will almost always say that n is prime, and for most n it
will be wrong. If n is composite it will almost surely not detect that fact
because chances are that a randomly chosen m will be coprime to n, even
if n is composite. Only if m has many small factors will m and n being
coprime imply that n is prime with reasonable probability. Fortunately we
have a condition that all prime numbers must obey, namely, from Fermat's
theorem we know that if n is prime then for all m coprime to n, m` 1 is
one more than a multiple of n.

So how about this: generate many random ms where m < n and test
whether mn- 1 is 1 modulo n. This is fast with MODULAR-POWER. If any
such m fails the test then n is composite, otherwise n is unlikely to be
composite. (If n is indeed prime then if we choose m < n there is no
need to check that m is coprime to n, it must be. ) Only Carmichael
numbers will slip through, and they are rare: there are only two hundred
and fifty-five of them less than one hundred million. As n keeps passing
the test, our confidence that it is either prime or Carmichael increases. But,
you sigh, n might be Carmichael.

Given n and m, let k = (n - 1)/ 2v(-lW, where v(n) is the number of
times two divides n. Then n is a base m pseudoprime if

mk =1 (modn)

or if there is an i between 0 and v(n - 1) - 1 such that

m k2'- (modn)

Now here's the last test: pick many ms at random where m < n and test
whether n is a base m pseudoprime for each m. If n isn't pseudoprime
for some m then n is composite, otherwise n is probably prime. This
test is better than the last because not even Carmichaels can survive it in
the long run. And we can repeat it as many times as we wish. (See
algorithm 6.4. )

It is possible to show that if n is not pseudoprime then n is composite,
but if n is pseudoprime then n may be prime or composite. Fortunately it
is possible to show that if n is composite then n will fail the pseudoprime
test for at least half of the integers m < n. So running the algorithm
is like playing one round of Russian roulette where at least half of the

3"An idea will not work unless you do." Oswald Avery.
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bullet chambers have bullets; if n is indeed prime it has nothing to fear,
but if it's composite there is a better than one in two chance that it will
be shot. Of course a composite number could get lucky and pass the
test over and over; we can't be sure that n is really prime just because it
keeps passing this test. That's why we call the survivors pseudoprimes:
they fake being primes (pseudes is Greek for false). The brilliant thing
about pseudoprimes is that for the purposes for which they are used they
are as good as primes.

PSEUDOPRIME ( n)
{ Look for a witness to n's compositeness.

v(n) is the number of times two divides n.
Return composite if n is found to be composite,
otherwise return pseudoprime.
n>_3is odd. }

guess -- uniform(2, n - 1)
if MODULAR-POWER(guess, v(n - 1), n) = 1

return pseudoprime

test +- (n - 1)/2'(n-1)
for i from 0to v(n-1)-I

power -- test x 2i
if n divides MODULAR-POWER(guess,power, n) +1

return pseudoprime

return composite

Algorithm 6.4

6.4 Secret Numbers
What is truth? said jesting Pilate, and

would not stay for an answer.

Francis Bacon Essays: Of Truth

The secrecy problem is about keeping secrets. How can we transport infor-
mation in a network whose nodes are information producers and con-
sumers (users) and whose edges are information transporters (commu-
nications channels)? To model this problem let edges be directed or undi-
rected, with edge costs representing time, channel bandwidth, or cost of
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information loss. Suppose there is an edge joining Alice and Bob. If the
edge is undirected then Alice and Bob trust each other, and they trust the
channel. If the edge points from Alice to Bob then Alice distrusts either
Bob or the channel, but Bob trusts both Alice and the channel. If the
edge points both ways then neither Alice nor Bob trusts the other, or nei-
ther trust the channel. Note that Alice and Bob may trust each other yet
they may have no secure edge joining them. Information can flow along
all edges, regardless of edge direction, if any.

For example, when meeting a friend in private you trust both the friend
and the channel (the private face-to-face conversation). When phoning
a friend you trust the friend, but not the channel. When logging on to a
computer or using a cash dispenser, you (usually) trust that the computer
is who it says it is (which means that you trust both the channel and the
respondent) but it doesn't trust you, until you give a password. When
meeting or phoning an enemy you may trust neither the enemy nor the
channel; or you may distrust the enemy but trust the channel. When two
paranoiacs meet they trust neither each other nor the channel.

Pause When in a bank do you trust someone claiming to be a teller? When
logging on do you trust the program claiming to be the login program?

Since the secrecy problem involves information, communication, and
ownership, almost every information exchange is an example. Nodes can
be people, computer terminals, computers, cash dispensers, bank tellers,
companies, governments, spies, databases, or cable companies. Edges can
be copper wire, face-to-face speech, fiber-optic cable, smoke signals, tele-
grams, telephone calls, satellite links, letters, faxes, semaphores, reflecting
mirrors, or radio waves.

The simplest problem is a one node network, but this is uninteresting-
secrets are only fun if you share them. More generally, all undirected net-
works are uninteresting; since everyone trusts everyone else and all chan-
nels are secure, they are just communication problems and belong in the
previous chapter. The two interesting versions of the two node problem
are if one node distrusts the other, and if each node distrusts the other;
this is the authentication problem, which we examine in the next section
(page 385). The traditional secrecy problem is a three node problem
where two nodes trust each other and both distrust the third. (Alternately,
two nodes trust each other but not the channel connecting them.) See
figure 6.6.

Cryptology is about systems that keep secrets; cryptography (from the
Greek for secret writing) is about making such systems, and cryptanalysis
is about breaking such systems. A cryptosystem should let one node send
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a message to another without a third understanding any part of the mes-
sage. The sender can encrypt the message (the plaintext) into ciphertext,
then send it to the receiver, who decrypts it back into plaintext. Meanwhile
an attacker intercepts the ciphertext and tries to decrypt it. The three main
issues are privacy, authentication of sender or receiver, and integrity of
transmitted data.

plaintext ???plaintext

0 0 0
0 ciphertext 0 ciphertext 0

Alice Carol Bob

secure channel
Figure 6.6 Alice and Bob trust each other but not their main channel

It's safest to assume that an attacker intercepts every message. In an
ideal cryptosystem attackers cannot decrypt ciphertext. Further, in an ideal
system attackers cannot change, replace, create, delay, block, repeat, mis-
route, or undetectably reorder messages. Finally, they cannot even derive
information just because a message was sent. This last is difficult to mask
cheaply. To mask it the sender must continually send unnecessary mes-
sages to the receiver, or randomly send encrypted empty messages. Of
course, the empty ciphertexts must all be different, otherwise the attacker
will realize they're just noise. Some, or all, of these cryptosystem attributes
can rely on physical security, misdirection, and deception, as well as cryp-
tographic security.

Now how do we accomplish all of these aims? Well there are three
philosophies: we can lock the building (use a secure channel, and keep
data unencrypted); lock the data (use an insecure channel, but encrypt
data); or hide the data (keep data apparently unencrypted, but with a
hidden message). Of course, the truly paranoid, being prudent, will quite
sensibly lock the building and the data, then hide the data!

We can think of a cryptosystem as a mapping from the cross product of a
message space and a function space to a ciphertext space. Choose a func-
tion f, to encrypt and a function fd to decrypt. c and d are called keys;
they let us refer easily to the functions in the function space of the cryp-
tosystem. Given a message m, encrypt it by applying fc to form fc(m),
the ciphertext. To decrypt the ciphertext apply fd to form fd(fc(m)) to
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recover the plaintext, m. We want functions such that for all m in the
message space:

fd(fC(m)) = m

Our aim, when wearing our cryptographer hats, is to choose the function
space, and specific functions f, and fd, so that: c and d are easy to
remember; fc and fd are easy to compute; and d is hard to find. When
wearing our cryptanalysts hats, our task is to find d and break the system,
or at least to find m from f (m) without necessarily finding d.

Changing a key is usually much easier than changing the entire system-
algorithms, file formats, communicating agents, communications channels,
and communication protocols. Since these parts of the system can last
a long time, and people are weak, it's best to assume that they are all
compromised. In the old days, attacks were classified by the information
attackers had. Nowadays, because changing keys is easy while changing
systems is hard, we assume the attacker knows the encrypt and decrypt
algorithms, and magically knows the plaintext corresponding to a polyno-
mial number of ciphertexts.' So the attacker knows the function space,
but not the keys, c and d. The system's security depends on the difficulty
of deriving c and d even knowing all previous ciphertext/plaintext pairs.

Finally, let's assume that attackers cannot penetrate secure channels, and
that secure channels have low bandwidth. It's reasonable to assume that
secure channels can only carry small amounts of data, or large amounts
infrequently, since otherwise there is no secrecy problem! For example,
when Alice and Bob meet privately they have a (supposedly) secure con-
versation, perhaps to exchange keys, but when they part they must use
their high bandwidth communications channels (the mail, their computers,
their faxes) to exchange large amounts of data. More importantly though,
naive dependence on a supposedly secure channel, agent, or place has
been responsible for most major security breaches. No security system is
proof against users who leave their passwords lying near their terminals,
carry their authorization codes with their credit cards, or leave their spare
door keys under their door mat. Any system is penetrable if it depends on
a secure channel.

Everybody keeps secrets. Some of the oldest civilizations used secret writ-
ing to keep their secrets. Egyptian hieroglyphs (from the Greek for holy
carvings), initially the secret writing of priests, weren't decrypted until

4Polynomial in the message length that is. Usually the size of the message space is expo-
nentially larger than the message length, so knowing a super-polynomial number of pairs
makes breaking the system trivial in the sense that the attacker would be allowed to know all
pairs-in which case, decryption is just table lookup.
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the chance discovery of the Rosetta stone in 1799. The Spartans spirally
wrapped a strip of parchment around a tapered rod called a scytale (Greek
for staff) of secret diameter before writing the message on it. The con-
queror of Gaul, Julius Caesar, also encrypted messages; this system cycli-
cally mapped letters to the third letter on in the alphabet: a becomes d, z
becomes c.

Over the millenia many systems have been thought unbreakable. Most
have been broken. Before 1975 the cryptographer's main tools were
substitution and transposition. Under substitution, plaintext symbols are
replaced by one or more ciphertext symbols. Under transposition, only
the ordering of the symbols is changed (see figure 6.7). Caesar used
substitution and the Spartans used transposition.

I e t ' s g e t a b e e r

S A { • • A • A 4, A 4 4, 4, 4, substitution
m f u 't h f u b c f f s

>>< X transposition
u h m t 'f u f f e b s f

Figure 6.7 Substitution and transposition

A letter-for-letter substitution does not change the frequency of English
letters. Since, as we saw in chapter four (page 261), the six most fre-
quent letters in English are e, t, a, i, o, and n, it's easy to break any Caesar
system given a long ciphertext by counting letter frequencies. A frequency
attack will always break it if the message is long enough. Failing that, just
knowing that the message is English and that a Caesar system is used, is
enough to decrypt the message since there are only twenty-six choices.

Ps Dbo zpv sfbe uijt, j xpoefs? J tvqqptf tp. Jg zpv eje, uifo
dpohsbuvmbujpot!

There is only one provably secure system known: a one-time pad: an
infinite stream of random letters that are used to modify the message a let-
ter at a time. Each random letter in the pad is used to modify one letter in
the message and then thrown away. Both the sender and the receiver must
have a copy of the pad. No amount of previous plaintext/ciphertext pairs
can help attackers decrypt the current ciphertext; as far as they are con-
cerned it is complete gibberish. Unfortunately, a one-time pad is expen-
sive, and each key is as long as the message. Allegedly the Washington-
Moscow hotline uses a one-time pad.
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A cryptosystem's worth is primarily determined by how secure it is.
Other things, like encrypting speed, secret key distribution, and data
expansion, are important, but security is the main thing. To evaluate a
system we need to know what sort of attacks it might be subjected to, and
for how long. A system is secure enough if it can resist all attacks for an
appropriate time. For instance, a ciphertext telling the army to demolish a
city may need to be secure only for the time it takes to deliver and decrypt
the ciphertext; the message may not need to be secret after that. This time
period might be only a few minutes, so even an insecure system could
be secure enough. Almost all major cities are less than ten minutes away
from a submarine-based missile attack.

Most systems are only computationally secure. Their security relies on
the probable cost of solving some problem. For instance, a nation wishing
to send encrypted press releases to its embassies may regard as secure a
system that can resist attack for a year; but that system is insecure if the
nation wants to encrypt data for thirty years.

Secret Key Systems

Secret key systems are schizophrenic; they need secret, but common, keys.
In a secret key system, all intended recipients have the same secret key the
sender used to produce the ciphertext. Usually we can distribute secret
keys securely-courier, armed guard, word of mouth-but where this is too
slow, expensive, or awkward, secret key systems aren't good. Further, the
more people who know the secret key the more insecure the system.

Before 1975, all known systems used a common secret key. These
systems were generally combinations of several substitutions and trans-
positions; their strength depended on the number of transformations
used, which was large relative to the numbers that had previously been
employed. As computers entered the game it was easier to generate
more, and more sophisticated, combinations, but because of computers
these combinations were easier to break!

Although a lot of cryptology was done during the second world war,
modern cryptology started in 1949 when Claude Shannon, the founder
of information theory, proved results about security and unicity. Loosely
speaking, the unicity of a system is the average length of a ciphertext such
that it is the image of only one plaintext/key pair. Given a system, let c,
be a random ciphertext of length n, let m be its corresponding plaintext,
and let k be a key. The unicity of a system is the smallest n such that

H(m) + H(k) = H(cn)
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where H is the entropy function defined on page 261 in chapter four.
Note that because of redundancy the entropy of English is less than two
bits per letter for long messages. (It would be five bits if English were not
redundant. ) A cryptosystem that always substitutes the same ciphertext for
each plaintext letter is monoalphabetic. Shannon showed that for monoal-
phabetic cryptosystems the unicity point for English is between twenty and
thirty letters. So any ciphertext longer than about thirty letters in a monoal-
phabetic system can be at most one message. A monoalphabetic system is
fairly easy to break.

In 1973, the U.S. National Bureau of Standards advertised for a cryp-
tosystem to establish a standard. The U.S. National Security Agency (NSA)
was asked to help assess submissions.5 The Bureau eventually chose a
secret key algorithm designed at IBM.6 IBM had invested seventeen person
years trying, unsuccessfully, to break the algorithm, but critics felt that IBM,
urged on by the NSA, had put a trapdoor in the algorithm to allow fast
decryption without the secret key. (A trapdoor is a function that is easy to
undo with an associated secret. ) These claims were based on the secrecy
surrounding the analysis of the non-linear tables, called S-boxes, in the
system. This analysis is still secret.

Critics also felt that the key length, fifty-six bits, was too short. IBM sug-
gested a one hundred and twenty-eight bit key, but the NSA vetoed this.
Of course that made everybody suspicious. Some claimed that the NSA
wanted keys long enough for normal security, but short enough for the
NSA to break. Yet despite protests, nobody broke the system, so in 1977
it became the U.S. Data Encryption Standard (DES). Since then, the DES
("dez") has received massive government funding, and has been endorsed
by most major banks and several large corporations. It has been imple-
mented on a chip capable of encrypting and decrypting twenty million
bits per second.

Despite many attacks, it has apparently remained unbroken for fourteen
years now. Many institutions use it daily, rumors of insufficient key length
and trapdoors notwithstanding. It is now known that longer keys do not
make it significantly more secure; so it is possible that the NSA did not seri-
ously weaken it. In sum, the DES is not publically broken, it is blindingly
fast, and it is particularly useful for short term purposes where security

5The NSA is a heavily cloaked organization charged with protecting American secrets and
penetrating foreign secrets. From their charter: "The Agency is charged with missions that are
vital to the nation's security-producing foreign signals intelligence information, safeguarding
U.S. communications systems, and providing computer security for the federal government."
The NSA is so secret that even the number of NSA employees is secret; some say that NSA
means "never say anything."
6IBM is a trademark of the International Business Machines Corporation.
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needn't be absolute and secret key transfer is feasible. The caveats are
that the U.S. Department of Defense never adopted it, the NSA no longer
certifies it for federal use, its certification runs out in 1993, and it may not
be recertified.

Public Key Systems

Before 1975 all systems linked the key and the decryption algorithm. If
you gave away your secret key, you gave away your encryption. Further,
if you encrypted something, you could later decrypt it. Since 1975 none
of these are necessarily true. In 1975, Whitfield Diffie and Martin Hellman
thought of a way to avoid the schizophrenia of a common secret key. In
a public key system all users have two keys, one private one public. The
private key is kept secret. The private key is for decrypting and the public
key for encrypting. And neither key is derivable from the other.

To send ciphertext, Alice encrypts the message using Bob's public key as
the encrypt key. Bob then uses his private key to decrypt the ciphertext.
There is no need for a secure channel; there is no need for a common
secret key; even Alice can't decrypt her own encrypted message; and Alice
and Bob don't even have to know each other!

Let f, and fd be the encrypt and decrypt functions and let m be the
message. We want

"* fd(fc(m)) = M,

"* f, and fd are both easy to compute, and

"* knowing c does not help to find d.

A function f is one-way if f(x) is easy to compute for all x, but for
almost all y it is hard to compute an x such that f(x) = y. f is easy
to do, but hard to undo (see figure 6.8); it's easy to put a letter into a
public mailbox, but hard get one back out. Presently three potentially one-
way functions exist: computing factors, modular square roots, and modular
logarithms. In the language of the next chapter, it is possible to show that
one-way functions exist if and only if P : A/'7P. Since this question is
still unresolved, we really don't know if public key systems exist, but the
system in the next subsection looks like a good contender.

In a public key system, the attacker knows the encrypt key (the public

key), and the encrypt algorithm. The attacker also knows the ciphertext.
But the one-way function makes it computationally hard for the attacker
to invert the encryption and recover the plaintext. When used in a public
key system, a trapdoor built into the function makes this inversion easy, if
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the private key is known. It must be computationally hard to deduce the
private key from the public key.

f easy f (X)

f- 1 hard

Figure 6.8 A one-way function

The composition of two functions f and g is the function fg where for
all x

f(g(x))=y ]=• z : g(x)=z and f(z)=y

Two functions f and g commute if for all x in their common domain

f(g(x)) = g(f(x))

If f, and fd commute then for all messages m

fc(fd(m)) = m

so we can decrypt a message then encrypt it. (Note that this only makes
sense if the ciphertext space is the same as the message space. )

If each user's encrypt and decrypt functions commute, then we don't
have to distribute shared secret keys in advance. Alice puts a message in a
box, locks the box with her lock, and sends the locked box to Bob. (See
figure 6.9. ) Bob locks the box with his lock and sends the doubly locked
box to Alice. Alice unlocks her lock and sends the singly locked box to
Bob. Now Bob unlocks his lock and opens the box. At no time is the
box sent unlocked. Unfortunately in this protocol anyone can impersonate
either Alice or Bob, since their private keys are secret.

Diffie and Hellman also gave a way for two users to generate a com-
mon secret key, and their method does not need a commutative public
key system. Called Diffie-Hellman key exchange, the method begins with
Alice and Bob agreeing on two large integers n and m, where n > m.
Alice chooses a large integer a, computes ma modulo n, and sends this to
Bob. (This is easy to do using MODULAR POWER.) Similarly, Bob chooses
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Alice B Bob

Figure 6.9 Alice passes a secret to Bob without shared keys

a large integer b, computes mb modulo n, and sends this to Alice. Now
Alice computes

(mb (modn))a (modn)

and Bob computes
(ma (modn))b (modn)

These two values are in fact the same since they both equal

mab (modn)

And Alice and Bob can then use this as their common secret key. If finding
modular logarithms is difficult, then it seems that attackers are stymied even
though they know n, m, ma modulo n, and mb modulo n. Of course
there could conceivably be some clever way to find the secret key without
solving the modular logarithm problem.

A Factoring System

It used to be that finding primes and factoring integers was a hobby of
harmless number theorists, but times have changed. In 1977, three com-
puter scientists, American Ronald Rivest, Israeli Adi Shamir, and American
Leonard Adleman produced a possibly secure public key system. They
based their system, now called the RSA, on the presumed difficulty of fac-
toring. Although the RSA has been patented, current RSA chips are slower
than DES chips, and the U.S. government does not yet support the RSA as
it does the DES.

Here's how it works: Alice chooses two large non-equal primes, k
and 1, say one hundred digits each, and computes n = kW. She then
finds a large integer a, coprime to ýb(n), the totient function of n, and
computes b, the inverse of a modulo 0(n). That is,

ab = 1 (mod a(n))
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Therefore there is some i such that ab = iOb(n) + 1. Alice's public key
is (n, b); her private key is a.

To send Alice a secret message, Bob converts his message to a sequence
of numbers, each less than n. Let one of these numbers be m. Bob
computes mb modulo n and transmits this ciphertext, call it c, to Alice.
Alice computes Ca modulo n and recovers m since

Ca = (mb(modn))a

= mab (modn)

= mio n)+1 (modn)

= miow x m (modn)

= m (modn)

This system's security depends on the presumed difficulty of factoring.
It replaces a secure channel with a (supposedly) secure cost. So far, all
known attacks have been shown to be unlikely to succeed, but it has slight
weaknesses. For example, for every public key, at least nine messages are
unconcealable; that is, there are at least nine ms such that mb modulo n
is m. Worse, for a tiny number of choices of public keys, no messages are
concealable! Fortunately it's possible to choose the parameters to guaran-
tee that only nine unconcealable messages exist. And natural languages are
so redundant that, as long as there are only a constant number of uncon-
cealable messages, the system can simply check whether the ciphertext
equals the plaintext and alert the sender to change the message. The RSA,
with suitable parameters, appears to be computationally secure. Finally,
there is a variant of it that is computationally equivalent to factoring.

A Knapsack System

Establishing the computational security of a system is difficult when the sys-
tem has a trapdoor. Consider the knapsack problem: Given n tools each
weighing an integer number of kilograms, and a knapsack that can carry m
kilograms, is there a subset of the tools that will exactly fill the knapsack?
This problem is probably computationally hard and there is more theoret-
ical evidence that it is hard than there is that factoring or finding modular
logarithms is hard. 7 So perhaps a knapsack-based public key system would
be really secure.

In 1978, American computer scientists Ralph Merkle and Martin Hellman
designed a system around the knapsack problem. In their system, Mice

7 1n the language of the next chapter, factoring is only known to be in AKP, but knapsack is
ArP-complete. The DES is not known to be based on an .A7r-complete problem.
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publishes a vector of integers, A. To send a message m to Mice, Bob
converts m to a binary vector, B, and sends Alice A. B, the inner product
of two vectors A and B. The inner product of A = (al,a 2 ,.. . ,a n) and
B = (bl,b 2 ,.. .. b,) is albl +a 2 b2 +"" +anbn. Carol, intercepting ARB,
must solve the knapsack problem to recover B. However Mice computed
A to make this easy.

A superincreasing sequence is one in which each term is greater than the
sum of all previous terms. That is, a,, a 2 , a 3 , ... , is superincreasing if

i-I

ai > E aj
j=1

It's easy to recover B from A • B, if A is superincreasing,

Ps Why is this easy?

But choosing A to be superincreasing lets Carol easily find B, so Alice
chooses a superincreasing vector A' then disguises it to form A, her public
key. Mice chooses two large coprime integers k and 1, and masks A' by
transforming it into the public A using

ai = la' (modk)

It was felt that the ais are pseudorandomly distributed and this makes
recovering B from A • B as difficult, in theory, as the knapsack problem.

After receiving m = A • B, Mice computes

M 1-lm (modk)
n

-- 1 aibi (modk)
i=1

n

1-1 la'bi (modk)
i--1

n

-- a'bi (modk)
i=1

then recovers B from A'. B. Which is easy since A' is superincreasing.
Unfortunately, in 1982 Shamir broke this knapsack system, then Adleman

broke the Graham-Shamir knapsack, a more secure iterated version of the
knapsack, and in 1984 Ernest Brickell broke the iterated Merkle-Hellman
knapsack. They broke these systems by exploiting the way A was formed,
not by solving the knapsack problem in polynomial time.
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6.5 Authentic Numbers

What we call reality consists of a few iron
posts of observation between which we fill in

by an elaborate papier-mache construction
of imagination and theory.

E. H. Gombrich, Art and Illusion

Authenticating authorship or validity is becoming increasingly important as
an increasing amount of data is electronic. We authenticate others by per-
sonality characteristics: their faces at meetings, their voices over the phone,
their signatures on checks. We test something that only the real person
could know, do, or have: a face, a mannerism, a voice, a walk, a signa-
ture, a memory, a fact. Except for the last, these tests are irrelevant when
communication is electronic, because they can be electronically forged.
Computers makes impersonation easier than before, particularly when the
only communication is electronic. How can we create a digital signature?

We want to verify that a message came from the alleged sender, went
to the intended receiver, was not changed, and was received in the same
sequence that it was sent. This is the authentication problem. Solving it
would be useful in electronic funds transfer, in terminal sessions, in gov-
ernment agreements, and in court. The three main authentication situa-
tions are: with two-way trust (against an attacker); with one-way trust
(user and a computer, a database, a bank, an institution); and with no
trust (between governments, banks, companies, sleazy individuals). The
difference between the secrecy problem and the authentication problem is
the difference between maintaining privacy and maintaining integrity.

If Alice and Bob trust each other they can authenticate each other by
sharing a secret key. Bob verifies that a message came from Alice if he can
decrypt it using their common secret key. But impersonation is easy in a
public key system since encrypt keys are public. However if the system
is commutative we can sign messages. Suppose Bob wants to send Alice
a signed message. Bob sends Alice a locked box containing a note and a
locked box. He locks the outer box with Alice's public key, so only she
can unlock it. And he locks the inner box with his private key, so only he
could have locked it.

Specifically, let Bob's private key be fd and let Alice's public key be f,.
Bob writes his message m, then forms fd(m). Then he attaches his name
"bob" in plaintext, and encrypts the message "fd(m) bob" with Alice's pub-
lic key, f,. He then sends fc("fd(m) bob") to Alice. (See figure 6.10;
to suggest the two levels of encryption the secret message "msg" is double
hatched, and the whole message, with signature, is single hatched. ) Alice
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decrypts this with her private key. She now has "fd(m) bob" and sees
that the (still unreadable) message claims to have come from Bob. She
then uses Bob's public key on fd(m) to recover m. Thus she recovers
the message and can be sure that it came from Bob; presumably, he is the
only one who knows fd.

Figure 6.10 Bob signs messages with a commutative public key system

If Alice trusts Bob she can use this scheme to authenticate his messages.
Note that Alice cannot later forge Bob's signature, since she still doesn't
know his secret key. But if she doesn't trust him she can't convince Carol
that the message came from him because he could say that someone stole
his secret key. Of course if the system holds a user culpable for losing
their private key then Alice wins the case.

Now consider a cash dispenser that processes a request to withdraw
money from a bank account. Making this interaction secure is the cash
dispenser problem. The dispenser sends the request to a central com-
puter and the bank sends an acknowledgement approving the withdrawal.
An attacker could record the acknowledgement, cut the connection to the
bank, and withdraw more money by impersonating the bank and replay-
ing its acknowledgement. To detect this we can time-stamp each valid
acknowledgement.

To detect message modification, we can add a hash code dependent on
every bit of the plaintext. To detect message repetition, we can make this
code time-dependent. To detect message reordering, we can number mes-
sages or include the time. That won't prevent an attacker from impersonat-
ing the sender once, but the impersonation will be detected after the sender
transmits the next message. We can reduce the chance of any imperson-
ation at all by sending two (or more) time-dependent authentications with
each message, where the second is the last authentication sent. This solves
the cash dispenser problem.
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Public Authentication

Sometimes authentication is necessary, but secrecy is not allowed. For
example, suppose Mice, a Citibank customer, wants to withdraw money
from a Deutschebank cash dispenser. Her request must be routed to a
Citibank computer and back, possibly passing through nodes owned by
other banks. A message containing the request, the destination bank, the
dispenser's identification, and an authenticator from the dispenser, must be
routed to Citibank. This is the remote cash dispenser problem.

There are numerous possible information leaks here. Mice's request has
her identification, so if it is sent in plaintext any attacker can then raid her
account. Even if the entire communications channel is secure, a trusted,
but unscrupulous, Citibank employee could raid her account. Further, if
the amount of the transaction is sent in plaintext then an attacker could
glean information both about Mice and about Citibank. Given enough
transactions, an attacker would learn a lot about both. So to be safe let's
encrypt everything. 8

But here's the problem: if the message authenticator is formed with a
key known only to Deutschebank, then it must be replaced by an authenti-
cator based on a secret key known to Deutschebank and Citibank. Citibank
won't stand for this. If the authenticator is formed with a key known only
to Citibank, then the message from the dispenser to Deutschebank must
be partly plaintext, otherwise the routing information will be unreadable.
So if the message is to be routed through intermediate nodes, it cannot be
totally encrypted. More generally, sometimes intermediate nodes cannot
encrypt and decrypt, or the eventual receiver does not want to trust inter-
mediaries. Such trust would be unacceptable to the intermediaries as well,
since it makes them potentially liable if there is a problem.

The more general problem occurs if Alice doesn't trust her bank. If
a bank decides to keep tabs on its customers' accounts, it can learn a lot
about their personal habits, and perhaps sell or otherwise exploit that infor-
mation. It should be enough for Alice to use a smartcard (a credit-card
sized computer) to anonymously prove that she is a valid customer, and
that she has enough money to cover her withdrawal. This is the anony-
mous credit problem, which is an instance of the yet more general privacy
problem. The privacy problem is more difficult than the traditional secrecy
problem because we can derive a lot of indirect information by looking at

8in reality the information leak is even worse. In 1991, U.S. cash cards only have a four-digit
"secret" authentication code. This is trivially crackable by anyone who works in the bank's
computer center. The situation is just as bad for credit cards that let you make payments over
the phone if you know the credit card number-on the assumption that only the card bearer
would know the number; but of course anyone the card bearer buys from could memorize
the number.



388 6 NUMBERS

public information. With computers, processing large amounts of informa-
tion is now easy, but our justice system has yet to catch up to the change.
As a trivial example, some agencies ask for the last half of your social secu-
rity number, others ask for the first half. They keep this information, and
it may even be publically available if you know where to look. If someone
were to get both pieces of information they could impersonate you. We're
years away from a solution to the privacy problem.

Now suppose the two countries of Avalon and Camelot wish to monitor
each other's compliance with a ban on underground nuclear testing. Each
country lets the other install underground devices detecting seismic activity.
Each country wants to read outgoing messages to ensure that no other
information is transmitted. Each country wants to authenticate received
messages to ensure that the other country has not sabotaged their monitors.
But an authenticator must also be readable to the monitored country! This
is the treaty compliance problem.

A secret key system requires trust-something in noticeably short sup-
ply here. A public key system partially solves the problem since Avalon
can give Camelot its decrypt key (and conversely). Avalonian devices on
Camelot's territory encrypt their messages using Avalon's (secret) encrypt
key; so Camelot can check them, but not forge them. Camelot can check
that authenticators on outgoing messages are only that. However Avalon
cannot convince another country, say Caerleon, that Camelot violated the
treaty-Camelot may claim that the incriminating report from the device is
a forgery.

We can solve this by having messages encrypted by equipment built by
both countries. The collected data from an Avalonian device on Camelot's
territory is first encrypted by Avalon's equipment, then forwarded to Ca-
melot's equipment, which decrypts the message to check its authenticity.
If it authenticates, Camelot further encrypts the message with its encrypt
key, and transmits the doubly encrypted message to Avalon. The decrypt
keys of both countries are public. Unfortunately Camelot can still claim
that its secret key was compromised-and hence that incriminating reports
are forgeries.

So we need a third country, say Caerleon. Each country has a public key
device and each publish their decrypt key. In this arrangement, everyone
knows their own encrypt key, but cannot know other encrypt keys with-
out collusion. Camelot cannot claim a forgery since, presumably, Avalon
doesn't know Caerleon's encrypt key. If Avalon and Caerleon gang up,
Camelot can still authenticate messages, but can't prove that it isn't lying.
Usually, the more arbiters, the higher the security becomes as the likeli-
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hood of full collusion falls. Another solution using zero-knowledge proofs
(page 390) forces the possibility of sabotage to go to zero.

Covert Channels

The problem at the heart of all public authentication is that authentication
allows covert channels. Suppose Alice and Bob are prisoners in separate
cells and Carol, their captor, agrees to carry messages for them. Carol
wants to fool one of them into accepting as genuine either a fake or a
modified message. Bob and Alice know that Carol will try to deceive them,
so they authenticate. Further, they know that each message must appear
unencrypted otherwise Carol won't carry it. But they need to plan their
escape. So they want to establish a covert channel between them in full
view of their captor, Carol. They want their messages to carry covert infor-
mation even though there is no overt information in them. In everyday life
we do the same with a nudge, wink, sniff, or raised eyebrow.

Carol's problem is that authentication can depend on the receiver finding
some prearranged structure or content in the message; so such information
is always redundant. Her captives can always sacrifice some of this redun-
dancy to establish a covert channel.

For example, Bob and Alice can use synonymous messages to convey
covert information. Before being separated they agree to exchange three-
bit messages. Of the eight possible messages, even parity messages mean
zero, and odd parity messages mean one. To authenticate only, they agree
beforehand on which of the four messages in each group will be accepted.
So, for each of the two possible outcomes, there are four possible mes-
sages, but only one can be authentic. Carol, attempting substitution or
modification, has a one in four chance of success.

Now to establish a one-bit covert channel, Bob and Alice agree before-
hand on two messages from each group that will be accepted as authentic.
One will be sent to indicate a covert one, and the other for a covert zero.
The receiver now accepts any of four messages as authentic, so Carol now
has a one in two chance of successful substitution or modification.

But if Carol can tell whether her deception attempts were successful, she
would see the frequency of deception tending toward one-half, instead of
one-quarter, as she expects. From this she can infer that there is a covert
channel. So, in the long run, sacrificing authentication bits is detectable.

However, detecting a covert channel can apparently be made as hard as
factoring. Take n = klm where k, 1, and m are large primes and

k l=3 (mod4), m=5 (mod8)
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These requirements ensure that n is not one of the instances that are
known to be easy to factor.

Any modular square a 2 modulo n, where a 2 is coprime to n, has eight
modular square roots. These square roots can be grouped into pairs-by
considering their size and the sign of a special function called the Jacobi
function. Alice and Bob agree on n, and as they both know its factors,
they can quickly compute the modular square roots of a transmitted a 2 . A
message is sent as a2 and is authenticated by also sending one of its mod-
ular square roots. It appears computationally hard to compute modular
square roots.

Covert information is transmitted as the choice of the root sent, from the
pair of roots chosen for use. That is, for any modular square, there will
be eight modular square roots (not necessarily all distinct), divided into
four pairs. One pair will be chosen as being the acceptable authenticators
for the message. Of that pair, if the smaller root is received, the covert
message is a zero, if the larger, a one. If any of the other six modular
square roots, or any other number is received, the message is rejected as
inauthentic.

However Carol can produce valid message/authenticator pairs by choos-
ing a random a and squaring it modulo n; thereby sending a random
covert message. To prevent this attack, Alice and Bob have to reduce the
number of acceptable messages, so that Carol will have a low probability
of choosing one. Of course this reduces the number of messages they can
send. We seem to be in a box; there seems to be no way to prove validity
without at least partially giving away the method of proof. Or is there?

Zero-Knowledge Proofs

During the Renaissance, mathematicians were in the same box; they
wanted to prove that they could do something, but they didn't want
rivals to know how, and so claim the credit. One standard way was to
deposit the proof with a (supposedly) impartial third party. Unfortunately
the third party could always secretly give the proof to one of their rivals.
Or could claim it themselves, as 1'H6pital did with Bernoulli's limits the-
orem (see page 47). Can we prove something without giving away any
details of the proof?

We can if we change the notion of a proof to a game. The game is to
convince a verifier that something is true. In 1985, Shafi Goldwasser, Silvio
Micali, and Charles Rackoff showed that it was possible to probabilistically
prove that a theorem was provable without giving the proof. That same
year, Oded Goldreich, Micali, and Avi Wigderson showed that if one-way
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functions exist then certain theorems that are probably hard have such
proofs. 9

This is like a Renaissance mathematician who claims to be able to solve
any cubic equation and who offers as proof any number of verifications.
In each verification the authenticator can choose any four coefficients of
a cubic and the mathematician gives the solution to the equation. The
verifier can easily check that each answer is indeed a solution of the equa-
tion chosen, but someone not knowing the general solution would be hard
pressed to find each answer. The point is that this can always be made to
work if the verifier's choices are random (unpredictable to the prover),
and if there is an easy way to check a given answer. Once again we're
confronted by a possible difference between finding and checking. In the
last chapter we face this issue head on.

Old-style proofs inextricably linked the knowledge of a fact with its ver-
ification; if you had the proof you could check it, and vice versa. But, like
the change in philosophy from secret key systems to public key systems,
these new-style proofs distinguish between a fact and its verification. The
differences between this kind of proof and older proofs are that a proof
is interactive, not a static text, and proof is by being convinced with high
probability, not certainty. Random numbers appear to be essential here.
Both the verifier and the prover can use an infinite stream of random
numbers.

Here's an example of such an interactive protocol called a zero-knowl-
edge proof. In a zero-knowledge proof the prover convinces the verifier
that something is true without giving anything else to the verifier beyond
that fact. That is, after the proof, the verifier is convinced of the result, but
is no closer to understanding why it's true, and is no closer to being able
to produce a proof of the result! This works if one-way functions exist.

Suppose I want to show you that a graph has property X. I encrypt
the graph, give you the encrypted graph, and invite you to ask me one
of two kinds of questions. One of the two kinds of questions ensures
that I'm always encrypting the same graph, but because I'm using a one-
way function even when given the answer to such a question you have no
computationally feasible way to break the encryption. The other kind of
question ensures that I can show that the graph has property X. During
each round you can ask me either kind of question, either one of which I
may have been able to fake answering without really knowing if the graph
has property X but not both together.

You can randomly choose which of the two kinds of questions to ask
me and I can't predict which of the two you will ask. So if I'm able to
repeatedly answer correctly, then after some number of rounds (whatever

9These theorems are proofs of membership in Af'r-complete languages.
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number that is needed to exceed your prefixed probability bound) you
will be convinced that the graph indeed has property X. But you will
have learned nothing more than that because I re-encrypt the graph every
time I answer one of your questions.

Y1KNOWTHERE'S A DIFFERENCE
BETWEEN A ZEPRO - KNOWLEDGE PROOF

AN) A PROOF OF ZERO KNOWLEDGE,,

Digital Signatures

Here's an example of how we can use zero-knowledge proofs to solve
authentication problems. The chromatic number of a graph is the smallest
number of colors needed to color its nodes so that no two neighboring
nodes have the same color. Finding the chromatic number of a graph
appears to be hard; even telling whether a graph can be colored with
three colors appears to be hard. Like the knapsack problem, there is strong
evidence that three-colorability is hard; in the language of the next chapter,
graph three-colorability is A/'-complete. Let's see how we can use this
problem to construct digital signatures.

First, we generate a random three-colorable graph. This is easy to do
by growing a random graph that is always three-colorable. To add a new
node, choose one of the three colors at random. This will be the new
node's color. Now choose a random subset of the nodes that are differ-
ently colored and connect the new node to them. Add as many nodes as
necessary to ensure security.

To use this graph in a signature scheme, we give the authenticator the
graph and an encrypted form of its coloring. Since graph coloring is appar-
ently hard, our ability to color the graph will be our signature. When being
authenticated, we don't want to give away the coloring, or any information
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about it, for fear that an attacker will eventually learn enough to reproduce
our signature. We don't even want the authenticator to be able to imper-
sonate us.

Now here's how we can convince the authenticator that we can three

color the graph. The authenticator lays the graph on a table and we
secretly three-color its nodes then cover up the node colors. The authenti-
cator picks a random pair of neighboring nodes and we tell the authentica-
tor the colors of the chosen nodes to show that they are indeed different.
Then we give the authenticator the decrypt key for the encryption we just
used to verify that we're not lying. We then secretly and randomly per-
mute the colors of all nodes; for example, by changing all reds to blues,
blues to whites, and whites to reds. (For a fixed three-coloring, there are
six permutations to choose from. ) In effect, this erases the authenticator's
(and any attacker's) memory. Then we invite the authenticator to ask
another question. We repeat this as many times as necessary to convince
the authenticator that we must know a three-coloring of the graph.

Intuitively, we aren't demonstrating knowledge of a fact, but of a pro-
cess. No matter how much an attacker eavesdrops on the conversation,
once we randomize there is no way the attacker can work back from the
answers given to the process that must have been used to produce the
answers. Of course few humans will be able to go through this process,
but we can put the whole thing on a smartcard and have the smartcard go
through the protocol with the electronic counterpart of the authenticator.
At no time is an attacker (or the authenticator) given any information that
can be later used to impersonate the smartcard bearer.

6.6 Random Numbers

I cannot believe that God
plays dice with the cosmos.

Albert Einstein, The Observer, "Sayings of the week,"

5 April, 1954

God not only plays dice, He also
sometimes throws the dice where they

cannot be seen.

Stephen Hawking, Nature, 257, 1975

So far we've assumed, and extensively used, random numbers. What are
they? To begin with, which of the following sequences are random?
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" 1,2,3,4,5,6,7,8,9,

* 2, 7, 1, 8, 2, 8, 1, 8, 2,

"2, 3, 0, 2, 5, 8, 5, 0, 9,

0, 5, 8, 8, 2, 3, 5, 2, 9,

"3, 3, 5, 4, 4, 3, 5, 5, 4,

Ps Give this a few minutes thought.

Your answers for the first two sequences probably were: always one
and the integers. With some background in mathematics you say that the
third is the digits of e. With much more background in mathematics you
say that the fourth is the digits of In 10. With a lot of experience with
puzzles you say that the last two can be described as the digits of 1/17 and
the number of letters in English names of numbers. Is this cheating? Silly
puzzles like these work by assuming a common experience base. Would
the average person consider all but the first two random?

For each of these sequences we could not have guessed anything given
only one or two digits, but we feel, somehow, that if we see nine digits the
sequence must be the sequence we guessed. But every finite sequence can
be the start of an infinite random sequence. Let's see if we can disentan-
gle random, from its various synonyms: typical, representative, arbitrary,
haphazard, accidental, scrambled, aimless, patternless, senseless, causeless,
independent, incidental, indeterminate, indescribable, undirected, uncon-
trolled, uncertain, unrelated, unordered, and unpredictable.

One meaning is that something is random if we have no reason to prefer
one state over another; another meaning is that one thing is apparently
unrelated to another. As a consequence, if something is random it is not
possible to describe it more briefly than to reproduce it. Another angle is
that if something is random it is not possible to predict it. The two main
properties are: equidistribution and unpredictability. The two are not the
same. For example, a number can be equidistributed yet not random, as
is shown by Champernowne's number.

0.12345 67891 01112 13141 ...

This number is equidistributed but certainly not random! The English math-
ematician David Champernowne, then an undergraduate at Cambridge,
invented it in 1933. Further, in physics, chaotic systems show that a system
can be non-random yet not practically predictable.
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In cryptology there is no such thing as a secure cryptosystem, only
secure enough ones. No cryptosystem is secure if you can buy the key
from one of the valid users of the system. Trusting computers does not
solve this problem, for we are then trusting the makers of the system.
Similarly, there is no such thing as a random number sequence, only ran-
dom enough ones. If a number sequence passes all the tests we throw at
it, it's "random."

Just as we say a cryptosystem is "secure enough" if we can't break it
in polynomial time, we can say that if we can't predict the next number
with better than uniform probability in polynomial time then it's "random
enough." A sequence is pseudorandom if no future term can be predicted
in polynomial time, given all past terms. Of course we need to be careful
here, we really want sequence, since, for example, all the digits of 7r are
predictable in the sense that we know that they are all less than ten!

Randomness is a particularly slippery concept since all large collections
of things will have some order no matter how we arrange them. We know
the order is there, but we can't get at it. For example the result proved
below shows that of any group of six people, at least three don't know
each other or at least three know each other. We know such a triplet
exists, but we don't know which of the six they are. This is the first result
in an area of combinatorial mathematics called Ramsey theory, named after
the brilliant but short-lived English mathematician Frank Ramsey.

Here's the result: in every complete graph on six nodes whose edges are
colored white or black there is either a set of three nodes connected only
by white edges or one connected only by black edges. Call such a triangle
a monochrome triangle. If a triangle isn't monochrome it's bichrome; we
want to show that not all triangles can be bichrome in the complete graph
on six nodes.

Ps Try to prove this.

Well let's look at the four kinds of triangles. Two are monochrome
and two are bichrome. Every bichrome triangle has two differently col-
ored edges meeting at one node. Call these edges a bichrome pair;
every bichrome triangle has exactly two bichrome pairs. Further, in a
complete graph on six nodes every bichrome pair is contained in exactly
one triangle. So the number of bichrome triangles is half the number of
bichrome pairs.

Now how many bichrome pairs can the complete graph have? Well,
there are at most six bichrome pairs meeting at each node. So there are
at most thirty-six bichrome pairs. So there are at most eighteen bichrome
triangles. But there are twenty triangles in all. So at least two must be
monochrome.
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Fair Random Numbers

As we've seen with zero-knowledge proofs, cryptology and randomness
are deeply intertwined; one particularly strange result is in producing fair
random numbers. Suppose Alice and Bob want to flip a coin to decide
something over the phone. How can they do this fairly?

The idea is to have Alice send a locked box that needs two keys (that
Alice has) to open it. Bob partially opens the box then Alice sends one
of the two keys. If Bob can now open the box he wins the toss, if not
then Alice wins.

Here's how it works: Alice chooses two large primes and sends their
product to Bob. Bob tries to factor it; if he succeeds he wins, but chances
are slim. He then checks that the product is not even, a prime, or a power
of a prime. It is possible to show that these cases are easy to check, and if
it is any of these Alice loses the toss. Then he chooses a number less than
and coprime to the product. If this number, by chance, is a factor then
he wins immediately (but, again, the chance is small). He then squares
it modulo the product and sends the remainder to Alice.

Alice uses the Chinese remainder theorem to find two pairs of numbers
that Bob's secret number could have been. She chooses one of the num-
bers and sends it to Bob. If Bob can now factor the product he wins the
toss; if Alice sends Bob's secret number, then Bob has no more information
and so cannot factor the product, so he loses the toss. If finding modular
square roots is hard, Alice cannot win better than one in two times. If
factoring is hard, Bob cannot win better than one in two times. So this
protocol provides an unbiased coin flip.

6.7 Transforming Numbers

Life is the art of drawing sufficient
conclusions from insufficient premises.

Samuel Butler

In 1979, Allan Cormack, a South African-born American physicist, and
Godfrey Hounsfield, a British engineer, were awarded the Nobel Prize in
medicine for a new device to look inside people. The device revolution-
ized medicine because surgeons can now see internal anatomy without
having to cut. The device has since evolved into a CAT scanner: a comput-
erized axial tomography scanner. It provides clear images of the body as if
it were cut in two with a buzzsaw (tomos is Greek for cut). And it works
in part because of a mathematical operation called a Fourier transform.
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The idea is to take numerous x-rays of one slice of the body and recon-
struct the tissues that must be there based on the intensities of the emerging
x-rays. Dense material attenuates an x-ray more than tenuous material, so
tissue containing calcium, like bone tissue, absorbs more of the ray than
lung tissue. Figure 6.11 shows an x-ray generator rotating about a patient
in a fixed plane as the x-ray detectors (the circles) detect the x-ray inten-
sities. This produces a large file of position-intensity numbers. Like crypt-
analysis, our job is to reconstruct the internals that must have given rise to
this file.

Figure 6.11 Taking a tomograph

Since the first scanner, the basic reconstruction idea has been used
to build scanners using ultrasound, positron emission (PET scanners),
nuclear magnetic resonance (NMR scanners), and magnetic resonance
imaging (MRI scanners). MRI scanners are even more useful than
CAT scanners, since it's easier to increase resolution, to display three-
dimensional images, and to differentiate between soft tissues-like brain
tissue. More generally, the basic idea is used in signal acquisition or trans-
mission systems-in radio astronomy, oceanographic seismology, astro-
physics, nuclear fuel testing, electron microscopy, solar physics, and
telephony. Further, the reverse idea can be used to target x-rays on a
portion of the body for cancer therapy. Truly a useful invention.

Tomography involves many technical details; let's consider a simple
reconstruction illustrating the general principles. Suppose our body is
a two-dimensional open triangle and suppose we have only three non-
parallel orientations for the x-ray generator (horizontal, vertical, and diag-
onal). See figure 6.12. Think of each x-ray path as a strip of film where
the ray's detected intensity has been smeared over the length of the strip.
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Overlaying these strips give us a rough idea of where the figure is since
the intensities superimpose. This is called back projection.

Figure 6.12 Recovering an object with filtered back projection

We can improve the back projected image by filtering each of the three
sets of strips so that contributions that cannot be part of the figure are
removed. For example, in the figure the horizontal strips happen to have
the same orientation as one side of the triangle; this shows up clearly in
the heavy horizontal line. From that we can deduce that many of the pix-
els turned on in the final figure, after superimposing the other two sets of
strips, must be spurious smear effects. Instead of smearing the detected
intensities over the entire length of the vertical and diagonal strips we can
concentrate them only in the horizontal band we know the body must lie
in. Similarly we can use information from the vertical strips to filter the hor-
izontal and diagonal strips, and so on. The more orientations we have, the
better our idea of the object's outline. But what about the interior blurring?

Suppose you've just bought a stereo system. Taken in by a glib salesrep
you splurged on a graphic equalizer and skimped on speakers; your speak-
ers only have woofers (heavy speakers that only respond to low frequency,
or bass, sounds, and suppress high frequency, or treble, sounds). After
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lugging your stereo home and plugging it in, you're disappointed by the
muffled sound. When you play a disk with lots of treble you hear almost
nothing! Your system is producing wonderful sound but the woofer cuts
off most of the high frequencies; they are mushed together into a blob of
energy at the top end of the woofer's response range.

Fortunately you can salvage something. A graphic equalizer is like an
extension of the amplifier's bass and treble controls. A good amplifier
amplifies a sound by a constant amount independent of the sound's fre-
quency. But, like sunglasses that differentially filter light, you can use the
equalizer to differentially increase the treble response (that is, increase the
energy the speakers get when given a high frequency sound) relative to
the bass response. Now you can fiddle with the various responses over
each frequency range the equalizer has, to differentially improve the speak-
ers' response to high notes. This does not recreate the original sound
stored on the disk, but with a finely divided equalizer, and enormous
patience, you can make the sound close to the original (but at lower vol-
ume). The Fourier transform does the same thing. And we can use it for
pictures as well as sound.

A blurred picture is like a muffled song. Instead of time varying frequen-
cies, a picture has spatially varying "frequencies." The Fourier transform
turns images into frequencies. Imagine walking across an image the size
of football field. As you walk, your immediate neighborhood has a cer-
tain color. If the image is large, the next color will usually be close to
the current color. But every time you reach an image boundary, the color
may change abruptly. The rapidity of color change is like the frequency
of sounds. A blurred image retains color variations close to the original
colors but the abrupt color change signalling a boundary is lost. We want
to recreate those boundaries (the high frequencies) with a filter function
analogous to the settings on the graphic equalizer. We need a filter that
undoes the blur.

This is an oversimplification of the intricacies involved in tomography.
The Fourier transform itself is a complex business and like all complex
things it has a real half and an imaginary half, which we examine next.

Fourier Transforms

in the nineteenth century, work on heat conduction by the French mathe-
matician Joseph Fourier showed that any sound can be approximated as
closely as we wish by adding pure tones-sine waves-of different fre-
quencies, amplitudes, and phases. Think of these sine waves in terms of
sound: amplitude roughly corresponds to loudness-high amplitude waves
are loud-frequency roughly corresponds to pitch-high frequency waves
are high pitched.
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Humans are midway between elephants and rats. We hear only a tiny
portion of the sounds either creature makes; most elephant sounds are too
low pitched for us to hear, most rat sounds are too high pitched for us to
hear. Most humans hear sounds only in the range 20 Hz to 20,000 Hz.1 0

Similarly, we see only a small portion of the electromagnetic spectrum-the
frequency of the portion we call visible light is about 1015 Hz (109 MHz,
a billion megahertz). We cannot see using infrared radiation or anything
lower, nor can we see using ultraviolet radiation or anything higher. If we
could see seven orders of magnitude lower than visible light there would
be no night; we would see by the light of radio and television waves.

We've already seen a transform-logarithms are transforms. Phones are
transforms too: they convert sound waves into electrical pulses (or, nowa-
days, light waves) and reconvert those pulses back into' sound waves.
Our ears calculate another kind of transform; ears turn loudness (of sound
waves) into frequency (of nerve impulses). Sound waves travel through
the cochlea, a snail-like tube in the inner ear (cochlea is Latin for snail),
and waves of different frequency excite different parts of the cochlea.
All our senses transform sense intensity into nerve pulse frequency.
Transforms are useful for many reasons-for faster computation, sound
or picture compression, and noise resistance in transmission. Fourier
transforms are important in signal analysis, and in communication and
control problems.

Although for tomography we need the Fourier transform of a two-dimen-
sional picture, let's work with the Fourier transform of a one-dimensional
picture (a scan-line); the algorithm generalizes to arbitrary dimensions.

Letz = V/-1-. The complex number

zj = e 2,7r/n

is an nth root of unity; if we raise it to the nth power we get 1 because
of the wondrous equality:

e= -1

Although there are either two or one Wth roots of unity on the real line,
there are n nth roots of unity on the complex plane.

Pause When is there only one root of unity on the real line?

The principal roots of unity are the first n - 1 powers of e 2,,/n (see
figure 6.13). From the definition we see that zJ is periodic with period n;

10The Hertz (Hz), a frequency of one beat per second, is named after the tragically short-
lived German physicist Heinrich Hertz, the discoverer of radio waves. On a piano, A above
Middle C is about 440 Hz.
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so, the principal roots of unity are the only roots of unity; higher powers
wrap around modulo n since

Zj+kn = e2z2(j+kn)/n

= e 2 z"j/ne
2

z kn/n

= z'e
2z k

= zj

z 1 z
zI 2 z2 i

Z3 - 6

n=4 n--8

Figure 6.13 Principal fourth and eighth roots of unity

A Fast Fourier Transform

The discrete Fourier transform of the n numbers,

ro , rl , . . . , rn-2 , rn-1

is the set of n complex numbers,

n-1 n-1

f(zj) = E rk zjk E rkea'jk'n

k=O k=O

where j = 0, 1, ... n - 1. In our tomography application the ris rep-
resent the intensities of n pixels in a scan-line, and the transformed points
represent the (spatial) frequency components of the n pixels.

If we compute each of the transformed points in the obvious way then
we use n 2 multiplications: n for each of the original n pixels. But, intu-
itively, we can do better because each coefficient captures information
about the entire picture, so the coefficients should be related.
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Suppose n = 2 m. Let's split the sum for each j into even and odd parts.

2m -1

f(zj) = S rkZjk

k=O
2m-1-1 2m -1-1

E 5 r2kz2jk + E r2k+lZj(2k+l)

k=O k=O
2- 1-1 2m-1-1

= 5 2 + Z 5: r2k+lz2jk

k=O k=O

Aha! The first sum is the Fourier transform of the sequence of points

ro, r 2 , . . . , r 2 -- 4 , r 2 -- 2

and the second is the Fourier transform of the points

ri , r3 , . . . , r 2m-3 , r 2m-1

And this leads us directly to an algorithm (see algorithm 6.5).

FoURIER-TRANSFORM (Polynomial, n )
{ Compute the Fourier transform of the n-degree Polynomial.
Polynomial is a list of coefficients indexed from 0 to n - 1.
Use Even, Odd, List1 , and List2 as temporary storage.
n is a power of two. }

ifn=l
then

return Polynomial[O]
else

for j from 0 to n/2 - 1
Even[j] -- Polynomial[2j]
Odd[j] -- Polynomial[2j + 1]

List1 -- FOURIER-TRANSFORM(Even, n/2)
List2 <-- FOURIER-TRANSFORM(Odd, n/2)
for j from 0 to n - 1

z -- e 2z7jj/n ; k +- j mod (n/2)
Polynomial[j] ,- List, [k] + zList2 [k]

return Polynomial

Algorithm 6.5
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If g(n) is the worst number of multiplications when n is a power of two
then

g n 0 n = 1
2g(n/ 2 )±+ n n > 1

So g = 0 (n ig n). This algorithm works for one dimension only; for
two-dimensional pictures we can apply the algorithm twice, at a cost
of 0(n21g 2 n).

6.8 Coda-Straight On Till Morning

The disappointing fact is that while computer science
welcomes some mathematical experts, and recommends

that students of the subject have a dose of theory as
"preventative mathematics" (in case of a later attack of

Fundamental Difficulties), not very many practical
computer scientists attempt to understand and apply

the deep results of theory.

Richard G. Hamlet,
Introduction to Computation Theory

In this chapter we've looked at some of the oldest and some of the newest
work in the analysis of algorithms. What have we learned? Well with-
out previously "useless" number theory, contemporary cryptology wouldn't
exist. Without Fourier transforms, or something similar, tomography would
be much more inefficient, and may not even exist. The most abstruse
theoretical work can have important practical applications. Theoretical is
not a synonym for impractical. This is borne out again in zero-knowledge
proofs; an apparently ridiculous idea that makes digital signatures possible.

Pseudoprime numbers and pseudorandom sequences are instances of
another important development. The basic scheme is to take an idea and
relax it, then use the relaxed instances in place of the original. This is a
wonderfully liberating idea. But the problem with using relaxed instances,
as we have seen with the fall of several knapsack cryptosystems, is that
we're living in a house of cards, never knowing whether someone will
break our system tomorrow. But then we've always lived in this house,
it's just that we can see the cards now. Are finding factors, modular loga-
rithms, or modular square roots really hard? So far we don't really know;
the best we can say currently is that they seem to be.

Why do we have spies? Well usually stealing is cheaper than work-
ing. Most spying today isn't military or diplomatic-it's commercial, which
means it affects us all directly. Public key cryptosystems threaten to take
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away spies' livelihood; information transmission can now be made effec-
tively impenetrable. Of course once there are humans in the loop spies
can still bribe or coerce them. There is the further danger that no public
key system is based on a provably difficult problem.

Choosing the best cryptosystem for a particular application is hard. The
strongest or fastest may not necessarily be the most useful. We have to
tradeoff cryptographic strength, speed, implementation cost, and key man-
agement and distribution. If security must not be compromised at any cost,
then use a one-time pad. The problem with a one-time pad is that many
long keys must be secretly exchanged. If this is impractical, then most
cryptographers would probably opt for DES; that's probably a safe choice
where only short-term secrecy is required. Sometimes secret key exchange
is impossible or impractical; in a network of n users, 0(n 2 ) keys must be
distributed, and the addition of a new user requires that n new keys be
securely distributed, to and from the other n nodes. Here a public key
system is better.

It's now a pressing matter to determine what we mean by a computation-
ally hard problem. Now that we're using hard problems to protect our
bank accounts, how do we know that they are really hard? We take up
this, the last, topic in the next chapter. To answer it we will also have to
answer the question posed in the first chapter-what is an algorithm? In
the last chapter we explore the province of infeasible problems. We will
find that the ideas behind interactive proofs and zero-knowledge proofs
help clarify both questions.

Endnotes

Computational Ideas
Bit-cost model, largest common factor algorithm, sieve algorithm, certifi-
cates, computational primality, computational security, computational ran-
domness, knapsack problem, covert channels, interactive proof, zero-kn-
owledge proof, probabilistic acceptance.

Definitions
" prime number: A prime number is divisible only by itself and one.

"* coprime numbers. Two numbers are coprime if they have no com-
mon factor other than one.



Endnotes 405

"* composite number: A composite number is not prime.

"* imaginary number: An imaginary number is a product of a real and
the square root of -1.

"* complex number: A complex number is a vector of two numbers,
one real, one imaginary.

"* nth root of unity: A root of unity is a complex number that is one
when raised to the nth power.

"* principal nth root of unity: A principal root of unity is one of the first
n - 1 powers of e 2',/n.

"* addition chain: An addition chain is a sequence of numbers whose
first element is 1 such that every number is the sum of two previous
numbers.

"* quotient: The quotient of a division is the largest number of times
the divisor can be subtracted from the dividend and still leave a non-
negative number; it's the floor of the dividend divided by the divisor.

"* remainder.- The remainder of a division is the difference between the
dividend and the floor of the dividend divided by the divisor.

"* factor: A factor of an integer is any integer that divides it leaving no
remainder.

" largest common factor: The largest common factor of two integers is
the largest integer dividing both numbers.

" pseudoprime: A base m pseudoprime is an n such that mk is one
more than a multiple of n or if there is an i between 0 and v (n -
1) - I such that mk2 ' is one less than a multiple of n (where k
(n - 1)/2v(n-1)).

" Carmichael number. A Carmichael number is a composite integer n
such that for all smaller m, mn-I is one more than a multiple of n.

"* totient: The totient of an integer is the number of positive integers
less than, and coprime to, the integer.

" modular square root: A modular square root of an integer m modulo
n is any integer a whose square is m more than some multiple of n.

" modular square: A modular square modulo n is the square of a mod-
ular square root modulo n.



406 6 NUMBERS

"* modular logarithm: A modular logarithm of m base a modulo n is
any integer b such that ab is m more than some multiple of n.

"* commutative functions. Two functions f and g commute if for all x
in their common domain f(g(x)) = g(f(x)).

"* function composition: The composition of two functions f and g is
the function fg where for all x

f(g(x))= y E• lz : g(x)= z and f(z)= y

"* inner product- The inner product of the vectors A = (a, a 2 ,... , an)
and B = (bi, b2,. ,bn), written A.- B, is En Iaibi.

"* superincreasing sequence: A superincreasing sequence is one in
which each term is greater than the sum of all previous terms.

"* pseudorandom: A pseudorandom sequence is indistinguishable from
a random sequence using up to a polynomial amount of time.

"* chromatic number.- The chromatic number of a graph is the smallest
number of colors needed to color the nodes of the graph so that no
two neighboring nodes have the same color.

Constants
w Champernowne's number = 0.12345 67891 01112 13141 ...

Notation

"* A = and

" V = or

* -' = not

* Al = the size of the set A

= = equal remainders

* •,(n) = totient of n

Conventions
- the largest common factor of 0 and 0 is 0.

Tools
* The unique factors theorem: Every integer greater than one is

uniquely expressible as a product of primes raised to integer powers.
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" The Chinese remainder theorem: If n1 , n 2 , . . . , nk are all pairwise
coprime, then the k linear congruences m ai modulo n i, i =
1, 2, . . . , k, are simultaneously solvable and the solution is unique

modulo fIi 1 ni.

"* The Euler-Fermat theorem: MOW leaves remainder 1 modulo n.

"* Fermat's theorem: If n is prime then for all m $ n, mn- 1 leaves
remainder 1 modulo n.

" The prime number theorem: The number of primes less than n grows
like n / In n.

" The prime factors distribution theorem: Let f(m) be the number of
different prime factors of m, then for all r

lim 11 {m < n :f(m) < lnlnm +r lnv---nm} e dxn---ox n 2j00

f f(n) ={0 n = I
f{(Ln/2j)±++nmod2 n > 1

Sf(n) = [lg nJ +/3(n) - 1

* n = Ln/mjm + n mod m

* The largest common factor of n and m is the same as the largest
common factor of m and n modulo m.

* n > m ==>. n > 2(n mod m)

e e7 = -1

•g(n)= 0 n g=0 nlgn

2g(n/ 2 )+ n n > =1•g=O(nlgn)

Notes
Gerolamo Cardano, one of the early contributors to probability theory, also
invented an encrypting device, called a Cardano grille.

The reference for the AKP-completeness of the addition chain problem
is "Computing Sequences with Addition Chains," Peter Downey, Benton
Leong, and Ravi Sethi, SIAM Journal on Computing, 10, 3, 638-646, 1981.

The unique factors theorem is also called the fundamental theorem of
arithmetic; the largest common factor is also called the greatest common
divisor; coprime numbers are also called relatively prime numbers; modu-
lar squares are also called quadratic residues; and modular logarithms are
called discrete logarithms.
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The 1,065-digit prime in figure 6.5, page 368, is the largest found by a
general algorithm. It was found by Frangois Morain with a network of ten
workstations in about six weeks time. See "Distributed Primality Proving
and the Primality of (23539+1)/3," Franqois Morain, Advances in Cryptology:
Eurocrypt '90, I. B. Damg~rd, editor, 110-123, Springer-Verlag, 1991.

The elegant proof of the existence of monochrome triangles in the com-
plete graph of six nodes is adapted from On the Shape of Mathematical
Arguments, A. J. M. van Gasteren, Springer-Verlag, 1990.

Covert channels are the invention of Gus Simmons, who calls them sub-
liminal channels; see "The Prisoners Problem and the Subliminal Channel,"
Gus Simmons, Advances in Cryptology: Proceedings of Crypto 83, 51-67,
Plenum Press, 1984.

The result that all languages in A/P have zero-knowledge proofs is from
"Proofs That Yield Nothing But Their Validity and a Methodology of Cryp-
tographic Protocol Design," Oded Goldreich, Silvio Micali, and Avi Wigder-
son Proceedings of the 27th Annual Symposium on the Foundations of
Computer Science, IEEE Computer Society, 174-187, 1986. The use of zero-
knowledge proofs for digital signatures is from "Zero Knowledge Proofs of
Identity," Uriel Feige, Amos Fiat, and Adi Shamir, Proceedings of the 19 th

Annual ACM Symposium on the Theory of Computing, 210-217, 1987. The
discussion of zero-knowledge in the text avoids many technical details, the
most important of which is that there are three versions of zero-knowledge:
computational, statistical, and perfect. The text uses the weakest (the com-
putational) version. For more references see the further reading sections
of this and the next next chapter.

Factoring numbers finds its way into a variety of problems, for exam-
ple in the computation of fast Fourier transforms; see "Number-Theoretic
Transforms of Prescribed Length," Creutzburg and Tasche, Mathematics of
Computation, 46, 1986.

As an illustration of the universality of mathematics, Fourier developed
Fourier series to model heat conduction. Nowadays, Fourier series are
used in everything from consumer electronics to radio astronomy. We now
know that Gauss preempted Fourier, but, as with many of his results, he
did not publish his work. Gauss' motto was Pauca sed matura (Latin
for Few, but ripe). Until recently it was thought that James Cooley and
John Tukey were the inventors of the Fourier transform, but, once again,
Gauss was there first. The reference for Gauss' early discovery of both
Fourier series and the fast Fourier transform is "Gauss and the History of
the Fast Fourier Transform," IEEE ASSP Magazine, 1, 4, 14-21, 1984. Inci-
dentally, six years before he was to invent his famous transform, Fourier
was outward bound from Egypt on a French ship that the British navy then
hijacked. The Rosetta stone, which the British later used to finally decrypt
hieroglyphics, was also on that ship.
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A new transform appears likely to replace the Fourier transform as the
king of the hill-wavelet transforms. See "A New Wave in Applied Mathe-
matics: A technique called wavelets may upstage Fourier analysis in a mul-
titude of applications-from CAT scanning to locating subs," Science, 249,
858-859, August 1990, and "Wavelet theory sets out the welcome mat,"
SIAM News, 23, 8-9, September 1990. For a technical presentation see
"Continuous and Discrete Wavelet Transforms," Christopher E. Heil and
David F. Walnut, SIAM Review, 31, 628-666, 1989.

Problem 3, page 414, is from "The Complexity of Finding Cycles in Peri-
odic Functions," Robert Sedgewick, Thomas G. Szymanski, and Andrew C.
Yao, SIAM Journal on Computing, 11, 376-390, 1982.

Further Reading
For more background on tomography see The Physical Principles of Com-
puted Tomography, William R. Hendee, Little, Brown and Company, 1983,
and Image Reconstruction from Projections: The Fundamentals of Com-
puterized Tomography, Gabor T. Herman, Academic Press, 1980. Fourier
transforms now belong almost totally to signal analysis, so to find out more
about digital filtering you need to read Discrete-Time Signal Processing,
Alan V. Oppenheim and Ronald W. Schafer, Prentice-Hall, 1989. Com-
puter graphics and computer vision also make heavy use of Fourier (and
other) transforms; see Digital Image Processing Rafael C. Gonzalez and
Paul Wintz, Addison-Wesley, second edition, 1987.

Although dated, the best general introduction to number theory is An
Introduction to the Theory of Numbers, G. H. Hardy and E. M. Wright,
Oxford University Press, 1954. For an elementary introduction see Ele-
mentary Theory of Numbers, William J. LeVeque, Addison-Wesley, 1962.
The following survey paper gives a broad overview of primality testing
algorithms: "Number-Theoretic Algorithms," Eric Bach, Annual Review of
Computer Science, 4, 119-172, 1990. See also "Factorization and Primality
Tests," John D. Dixon, The American Mathematical Monthly, 91, 333-352,
1984, and the comprehensive Prime Numbers and Computer Methods of
Factorization, Hans Riesel, Birkhauser, 1985. The following gives a good
number-theory oriented introduction to cryptology and a useful introduc-
tion to recent factoring algorithms: A Course in Number Theory and Cryp-
tography, Neal Koblitz, Springer-Verlag, 1987.

The two original references for probabilistic primality testing still repay
reading: "Probabilistic Algorithms," Michael 0. Rabin, in Algorithms and
Complexity: New Directions and Recent Results, J. Traub (editor), 21-39,
Academic Press, 1976, and "A Fast Monte Carlo Test for Primality," R. Solo-
vay and V. Strassen, SIAM Journal on Computing, 6, 84-85, 1977. See also
an erratum list to the last article SIAM Journal on Computing 7, 118, 1978.
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Randomness is deeply related to an area of research called algorith-
mic information theory (also called Kolmogorov complexity). Algorith-
mic information theory deals with the difficulty of describing an algorithm
to solve a problem-it focuses on the minimum length of any algorithm
solving the problem-so it could equally well be called algorithmic com-
plexity theory. The following book will become the standard reference for
algorithmic information theory: An Introduction to Kolmogorov Complexity
and Its Applications, Ming Li and Paul M. B. Vitanyi, Addison-Wesley, to
appear, 1992. See also "Kolmogorov's Contributions to Information The-
ory and Algorithmic Complexity," Thomas M. Cover and Peter Gacs, IBM
Research Report. The canonical reference for Ramsey theory is Ramsey
Theory, Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer, John
Wiley & Sons, 1980.

For more background on cryptanalysis, particularly during the second
world war, see The Codebreakers." The Story of Secret Writing, David
Kahn, Signet, 1973. Alan Turing, the central figure of the next chapter,
played a major role in early cryptanalysis, see Alan Turing, The Enigma
of Intelligence, Andrew Hodges, Unwin, 1983. There are several books on
covert intelligence organizations, see The Puzzle Palace: A Report on NSA,
America's Most Secret Agency, James Bamford, Houghton Mifflin, 1982,
and Secret Service.- The Making of the British Intelligence Community,
Christopher Andrew, Heinemann, 1985.

The following two books are both excellent and they provide fur-
ther background on cryptology: Public Key Cryptography, Arto Salomaa,
Springer-Verlag, 1990, and Modern Cryptology: A Tutorial, Gilles Brassard,
Springer-Verlag, 1988. Brassard continues to update cryptologic advances
in "The Cryptology Column," in Sigact News. Brassard's book lists 250 ref-
erences. In particular see the references to David Chaum's work; Chaum
has done a lot of work on the privacy problem mentioned in the text, par-
ticularly for digital cash and smartcards. For physical implementations of
smartcards see "Smart Cards," Robert McIvor, Scientific American, 152-159,
November 1985.

For more background on zero-knowledge proofs see Uses of Random-
ness in Algorithms and Protocols, Joe Kilian, MIT Press, 1990, and "Zero
Knowledge and the Department of Defense," Susan Landau, Notices of the
American Mathematical Society, 35, 1, 5-12, 1988.

For encyclopedic analysis of random number generation, factoring,
and primality testing see The Art of Computer Programming. Volume 2,
Seminumerical Algorithms, Donald E. Knuth, Addison-Wesley, second edi-
tion, 1981. Knuth devotes more than forty pages of analysis to the largest
common factor algorithm alone.
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Questions

What but the wolf's tooth whittled so fine
The fleet limbs of the antelope?

What but fear winged the birds, and hunger
Jeweled with such fine eyes the great goshawk's head?

Robinson Jeffers, The Bloody Sire

[Exercises

1. Alice wants to give her bike to Bob. But their schedules make it
impossible for them to meet. If both Alice and Bob have bicycle
locks, can Alice let Bob have her bike without anyone stealing it?

2. One night you happen to be burgling a house for a desirable collec-
tion of analysis books. The house has two floors and you know the
collection is on one of the two floors. You also know that it will take
you five minutes to search one floor. After finding the collection it
will take you ten minutes to cart away all the books. It takes five
minutes to get from either floor to the other. However this house
has an alarm system and you know that after you break in you will
only have twenty minutes before the police come. Fortunately you
happen to have a coin in your pocket. What should you do?

3. Your brilliant but erratic friend has found an algorithm that can solve
an arbitrary exercise in this book in ten minutes flat. Unfortunately,
her incomprehensible algorithm only works one time in a hundred;
if it doesn't work within ten minutes it never will. Fortunately, her
algorithm can be repeated on the same exercise as many times as you
like, and each time it has a one in a hundred chance of solving the
exercise. If the average exercise takes you an hour to solve using
your normal algorithm (if you manage to solve it), and if you only
solve one exercise in five using it, is it worthwhile to switch to your
friend's algorithm exclusively?
Now suppose you work in a team of ten and everyone in the team
currently uses your algorithm to solve exercises. Is it worthwhile for
all of you to switch to your friend's algorithm? Is it worthwhile for
any of you to switch to your friend's algorithm?

4. Show that every two consecutive fibonacci numbers are coprime.



412 6 NUMBERS

5. Find the principal value of Z'.

6. Show that

Snlgn n even
~fln) nlg5 n odd

7. Let

f (n) 3n 2  n prime
f 2n lg n n composite

g n 2/20 n even
g(n) = n3 /lgn n odd

(a) Is f = 0(g)?

(b) Is g = 0(f)?

8. Suppose n is prime. When does n 2 divide 2n + 1?

9. Show that
n n2

(a) li(1 + Xi) > X
i=1
n n

(b) 1(1-xi) < xi
i=1 i=1

(c) -V-n _> n1/il-

10. Alice and Bob are two users of a public key system and Alice wants to
sign her messages to Bob as in the text. Alice's public key is (ni, a)
and Bob's private key is (n 2, b). But in general nl : n 2.

(a) Why does this complicate the exchange given in the text?
(b) Design a protocol surmounting the problem.

11. [Not Completely Serious: I] Your mission, should you decide to
accept it, is to decrypt the following message we intercepted: "Ink,
leather, sausage, roulette, muffin, watch, fly, coffee, waltz, hiero-
glyphics!" Sources tell us it is a congratulatory message to one of
their agents.

12. [Not Completely Serious: II] Your mission, should you decide to
accept it, is to decrypt the following message we intercepted: "Carry
on indefinitely else we become a laughingstock. Do not stupidly
hijack a plane off the airstrip, security is not somnolent! Otherwise
we will be forced to render you inoperative." Sources tell us it is a
list of places to be infiltrated. So far places beginning with the letters
D, G, S, H, and R have been hit, and we know that there are also
targets in places beginning with N and M. Where will they hit next?
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13. A number is square-free if it is not divisible by the square of a prime.
Show that a Carmichael number is square-free.

14. Show that a Carmichael number must have at least three prime fac-
tors.

15. Paul Erdos found a new proof of the result that there is always a
prime between n and 2n when he was eighteen. Given this result,
show that there are always at least three k digit primes for each k.

16. Show that

f (n 0 n = 1

f{(Ln/2j)+I+nmod2 n > 1

==> f(n) = Llg nJ + 0(n) - 1

FProblems]

1. Suppose the probability that PSEUDOPRIME reports that n is pseudo-
prime given that n is in fact composite is less than one half. (It's
actually much less than one half.) What is wrong with the following
statement?
"The probability that n is in fact composite given that PSEUDOPRIME

reports that n is pseudoprime is less than one half."

2. Let m be a product of k coprime integers m, to ink; call these k inte-
gers our divisors. Represent n < m as the sequence of its k remain-
ders modulo each divisor. For example, using the five divisors 13,
15, 16, 17, and 19, one thousand is represented as the sequence (12,
10, 8, 14, 12).

(a) Can every n < m be represented?

(b) Can n < m have more than one representation?

(c) How hard is it to add two such integers?

(d) How hard is it to subtract two such integers?

(e) How hard is it to multiply two such integers?

(f) How hard is it to test the equality of two such integers?

(g) Why is this a useful way to do arithmetic if we have k parallel
processors?

(h) How hard is it to compare two such integers?

(i) How hard is it to divide two such integers?
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3. Given a function f mapping values of a finite domain onto itself and
an element of the domain x, the sequence

f(x), f(f(x))= f( 2)(x), f(f(f(x)))= f( 3)(x) ,

will eventually repeat. We want to find the smallest n such that
f(n)(x) has already appeared in the sequence.

(a) Show that this can be solved in no more than 3n function eval-
uations.

(b) Show that if we can use m storage locations to remember previ-
ous values then the problem can be solved in no more than

n(1 + O(1/v))

function evaluations.

Research

1. Many secrecy problems can be simplified. Figure 6.14 shows two
main ways to simplify them, a problem may be reduced or condensed
We can reduce a secrecy problem if it has two or more disconnected
components. We can condense a secrecy problem if a clique of two
or more nodes trust each other pairwise, and every node in the clique
distrusts (or mutually distrusts) some node not in the clique. How
many irreducible and non-condensible secrecy problems are there on
n nodes?

reducible condensible

Figure 6.14 Reducible and condensible secrecy problems

2. Table 6.2, page 361, lists those powers that are computable in n mul-
tiplies.

(a) What is the minimum number of multiplications we can do?

(b) If we wish to minimize the sum of the partial products generated
in finding mn what is the best we can do?
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We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the first time.

T. S. Eliot, Little Gidding

T N CHAPTER one we set out on a journey; now we return to the begin-
ning to ask some difficult questions. What is an algorithm? What

is a proof? What is a hard problem? How can we identify hard prob-
lems? How can we solve them? Throughout this book we've been design-
ing, analyzing, and redesigning algorithms without clarifying the idea of
an algorithm. We've now built many algorithms; what's common to all of
them? In this last chapter we'll explore the generally accepted notion of an
algorithm. Then we'll see what's wrong with it. While doing so we'll meet
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AK'P-complete problems-practical problems that are strongly suspected to
be computationally hard. Then we'll look for ways to climb even this
mountain chain of hard problems. Finally we'll grapple with problems
that are not solvable using any algorithm in the current algorithmic model.

First though we have to understand algorithms. And to do so we have
to detour into computability theory. The difference between computabil-
ity theory and complexity theory is that complexity theory asks: "How
cheaply can this be computed?" and "How hard is this to compute?" com-
putability theory asks: "When can this be computed?" and "Can this be
computed at all?"

Our story first takes us to the heart of the idea of an algorithm. What
is it? The story begins with a brilliant mathematician named David Hilbert
one Wednesday morning, nearly a century ago.

7.1 Remembrance of Times Past
History with its flickering lamp stumbles

along the trail of the past, trying to reconstruct
its scenes, to revive its echoes, and kindle

with pale gleams the passion of former days.

Winston Churchill, Speech, 12 November, 1940

1900 was an eventful year. As the old century died, three seminal things
happened-Sigmund Freud published a book, Max Planck presented a
paper, and David Hilbert gave a talk. Today many people have heard of
Freud and Planck, but few have heard of Hilbert.

In 1900, Freud published his The Interpretation of Dreams, a work that
was to become his magnum opus and the start of psychoanalysis. Freud's
lifelong ambition was to build a scientific psychology that would explain
all mental activities as the effects of prior causes. In October of that year
Planck presented his theory of the quantum of action in a seminar at the
University of Berlin. Planck's hypothesis explained some puzzling exper-
iments in black body radiation and it led almost directly to the quantum
theory. And the quantum theory forced a revolution in physics in the same
way that Freud's radical views of human nature forced a revolution in psy-
chology. Besides the philosophical implications of a discrete world, the
quantum theory laid the groundwork for nuclear physics and all that that
entails for our world.

Freud deliberately set out to change his world. Planck eventually real-
ized that classical physics had to change in fundamental ways. Both started
an enormous change in the way we view the world. Hilbert didn't want
to change the world; he just wanted to keep his beloved mathematics safe
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from harm. But what he started on the morning of Wednesday, August 8th,
1900, was to destroy forever the idyllic mathematical world he lived in.
And although he would never would know it, it was also the start of com-

puter science.

At the turn of the century mathematics was under attack. For five thousand
years mathematicians had been at play, madly inventing the future of their
discipline with little thought to possible inconsistencies between different
parts of mathematics. Over the centuries various people had complained
that there was no proof that some new technique would work, but no one
took them seriously. Besides, the German mathematician Georg Cantor
had just invented set theory and it seemed to put everything on a firm
logical footing.

Unfortunately mathematicians were about to be kicked over the prec-
ipice. Serious contradictions had been found in what was, until then,
unquestioned mathematical "truth." In 1900 David Hilbert, the most impor-
tant mathematician of his time, arguably the most famous German math-
ematician after Gauss, decided that the best way to restore mathematics
was to treat it as a game in which you manipulated symbols by fixed rules
without thinking of any possible meaning the symbols could have. This
formalist school of mathematics is dominant today.

Epitomizing this idea, Bertrand Russell, an English mathematician and
philosopher, was to write one year later:

Pure mathematics consists entirely of such asseverations as that,
if such and such a proposition is true of anything then such
and such a proposition is true of that thing. It is essential not
to discuss whether the first proposition is really true, and not
to mention what the anything is that of which it is supposed to
be true .... If our hypothesis is about anything and not about
some one or more particular things, then our deductions con-
stitute mathematics. Thus mathematics may be defined as the
subject in which we never know what we are talking about,
nor whether what we are saying is true.

Russell didn't say it, but strict formalism, by not letting semantic inter-
pretations influence how or when rules are applied, supposedly guaran-
tees that whenever we prove something we're sure it's correct. That was
the whole point. And in pursuit of it, Hilbert, along with most of the
mathematical world, was prepared to give up meaning. By the late thirties
Hilbert's scheme was widely accepted and the defense had been synthe-
sized into a retreat to formal systems.
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A formal system is a finite set of assumed truths, called axioms, and a
finite set of rules, called inference rules. The idea is to isolate all of the
intuitive, unprovable, or undefinable parts of an investigation in the set
of axioms and to use the rules on the axioms to infer new results called
theorems. We can then use the rules on the axioms plus any inferred the-
orems to infer more theorems. A proof of a theorem in a formal system
is a demonstration of a sequence of inferred theorems starting only with
the axioms and using only the inference rules and ending with the theo-
rem. The purpose of formal systems was to gain surety and freedom from
contradiction.

Now let's listen to Hilbert winding up his address to the Second Inter-
national Congress of Mathematicians in Paris, August 1900:

We hear within us the perpetual call: There is the problem.
Seek its solution. You can find it by pure reason, for in mathe-
matics there is no ignorabimus ["we shall not know"].

To spur on the gathered mathematicians to rectify his beloved mathematics
Hilbert suggested twenty-three problems for the new century. One prob-
lem, the second, was to establish that arithmetic was consistent, meaning
that, under the accepted rules of arithmetic, it is not possible to generate
a contradiction.

In 1931, Kurt G6del ("guer-dle"), a twenty-four year old Moravian grad-
uate student at the University of Vienna, showed that if any system as "pow-
erful" as arithmetic is consistent, then it cannot be complete-meaning that
some true statements are unprovable in the system! Since then it has been
shown that many formal systems are consistent-but none are interesting!
Today we don't know whether arithmetic is consistent; all we can say is
that if it is, then there are true things we cannot prove in it. This is sim-
ilar to the uncertainty principle in quantum mechanics, enunciated by the
German physicist Werner Heisenberg just four years earlier, in 1927: we
can find the exact position of a subatomic particle, or we can find its exact
velocity, but we can't do both together. So much for ignorabimus.

To see something of the intricacies involved in G6del's proof consider
Russell's paradox, named after Bertrand Russell, who invented it in 1902:
If a plumber fixes the pipes of all people who don't fix their own pipes,
who fixes the plumber's pipes? The crux of this problem is that something
doesn't exist just because we talk about it. 1 Similarly, can an all-powerful
being make a stone so big that it can't lift the stone? One answer is: What
is it lifting the stone off of?

The consistency problem was only Hilbert's second problem; his first
problem was the continuum problem. When Cantor invented set theory,

l"[Yossarian] had decided to live forever or die in the attempt." Joseph Heller, Catch-22.
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one of his first, and most startling, results was that there is more than one
infinity. Taking the number of integers as the first infinity, and using a
proof method called diagonalization, Cantor showed that there were more
real numbers than there were integers. But no one knew if there was an
infinity between the number of integers and the number of reals. Hilbert's
first problem was to settle this question, and the belief that there was no
such infinity became known as the continuum hypothesis.

In 1938, Godel partly solved the problem by showing that it couldn't
be proved false from Cantor's axioms of set theory; G6del was forced to
assume that Cantor's set theory was consistent, since it was not (and still is
not) possible to prove that it is. Then in 1963 the American mathematician
Paul Cohen showed that it couldn't be proved true from Cantor's axioms.
Thus G6del showed that it isn't disprovable, and Cohen showed that it isn't
provable! The continuum hypothesis is independent of the usual axioms
of set theory. If set theory is consistent to begin with, then we can assume
the continuum hypothesis true or false and still have a consistent set theory!
So much for that problem.

To avoid known paradoxes, Cantor's theory was modified and extended
by the German mathematicians Ernst Zermelo then Abraham Frdinkel, and
together with a widely-accepted axiom invented by Zermelo called the
axiom of choice, is referred to as ZFC (Zermelo-Frankel set theory plus the
axiom of choice). Like the continuum hypothesis, the axiom of choice is
independent of the other axioms, but it leads to bizarre results. For exam-
ple, anyone accepting the axiom of choice (as most contemporary mathe-
maticians do) has to accept that it is possible to dissect a sphere and pro-
duce a sphere of twice the volume! The formalist school was resisted by a
group of mathematicians called constructivists (sometimes called intuition-
ists) who, led by the Dutch mathematician Luitzen Brouwer, wanted to
toss infinite sets and rebuild mathematics from the bottom up starting from
the integers and applying only finite operations to them. This effort con-
tinues today in the work of the late American mathematician Errett Bishop
and his school.

7.2 Models of Computation
All human knowledge begins with

intuitions, proceeds to concepts, and
ends in ideas.

Immanuel Kant

Another of Hilbert's problems (the tenth) was to find a "finitary way" to
solve any diophantine equation. A diophantine equation is a polynomial
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equation in n unknowns that can have only integer solutions; named after
the early Greek algebraist Diophantus, thought to have lived either in the
first or third century. Hilbert actually wanted more; he wanted a "fini-
tary way" to solve any mathematical problem. Something like directions
in a cookbook-only more precise: name these variables; construct those
equations; solve for x, y, and z. In short, he wanted something he didn't
have a name for, he wanted an algorithm. Hilbert, and his contemporaries,
thought that such an algorithm must exist; they thought the difficulty with
finding it was that it was surely very complicated.

In 1970, twenty-seven years after Hilbert's death, Juril Matijasevil ("mat-
ya-say-vich" ), a twenty-two year old student at the University of Leningrad,
found a brilliant proof using, of all things, fibonacci numbers, showing that
this problem is computationally unsolvable-no such algorithm can exist.
Matijaseviý, building on work by American mathematicians Martin Davis,
Julia Robinson, and the American philosopher Hilary Putnam, could do
this because, during the seventy years between Hilbert's formulation and
MatijaseviZ 's solution, mathematicians had been furiously working on an
appropriate model under which the tenth problem made sense.

What had been developed in the years between Hilbert's statement of
the problem and its final solution by Matijaseviý was a precise and widely-
accepted definition of an algorithm. A lot of the credit for this revolution
in understanding goes to the then twenty-four year old English mathemati-
cian after whom the formalized notion was named-Alan Turing-and the
formalized notion of what an algorithm is has come to be called a tur-
ing machine.

As you may have surmised, this brief history has skimped on the details of
this exciting story, not least of which is that although we now use turing
machines as our paradigm of algorithms, it could possibly have been the
pet formalism of any one of several French, Austrian, American, or Russian
theorists. Other formalisms that might have had the honor are: (Jacques)
Herbrand functions, (Kurt) G~del functions, (Alonzo) Church calculus,
(Stephen) Kleene functions, (Emil) Post systems, or (Andrei) Markov
algorithms. Some of these theorists were kept from lionization by acci-
dent; for example, Post lost his left arm at twelve and suffered from recur-
ring bouts of manic-depression, and Herbrand died in a mountaineering
accident at twenty-three. (Perhaps in alternate universes where Herbrand
or Post developed their ideas, computer scientists build their theories on
Herbrand functions or Post systems. ) All of these formalisms have the
same computational ability as turing machines.

As an example of the interrelatedness of the work of these giants, Tur-
ing developed his famous machines to answer yet another of Hilbert's
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problems-the decision problem-that, in modern terms, asked whether
there is an algorithm deciding the truth or falsity of any mathematical state-
ment. This problem was vanquished independently by Church and by Tur-
ing in 1936; no such algorithm exists. What's more, the result is provable
from G6del's work on incompleteness in 1931! It's miraculous that all
these ways of looking at computation are the same.

All of these theorists made major contributions to logic and to mathe-
matics as a whole, and, almost as a side effect, because they were forced
to, they codified what it meant for something to be computable. This is sur-
prising when you consider that in the thirties, when most of this work was
done, there were no computers for them to abstract from. In fact there
is evidence that the brilliant Hungarian-born American mathematician John
von Neumann, who is often credited with the central ideas of present day
computers, developed them based on Turing's thought. This whole pro-
gram can be traced back to Hilbert's call and it continues today in logic,
philosophy, and computer science.

However turing machines came about we should be grateful to their
creator since without a flexible model of computation we would not be
able to come to grips with A'P-completeness. We would have no model
to distinguish feasible from infeasible algorithms.

Why Should You Care?

Suppose you are a programmer at Yoyodyne Propulsion Labs and your
boss asks you to find an efficient algorithm to generate a routing of wires
on a new chip they're developing. Of course, costs being what they are
and the world being what it is, Yoyodyne wants a routing using the least
amount of wire; reasoning, no doubt soundly, that the less they pay for the
chip and the more they charge for a copy of it, the more money they will
make. As is also the way of the world, your job's existence is a function
of Yoyodyne's profit margin.

So, you work on this problem and come up with a crude brute force
algorithm-all the clever algorithmic tricks you learned in previous chap-
ters failed. You couldn't find a way to avoid testing large numbers of the
possible combinations. Unfortunately the chip has sixty-four pin connec-
tors. Even though you managed to cut the cost of trying each combination
of connections to one second, your algorithm takes 264 seconds to run.
Recall the towers of Hanoi problem from chapter one. Even assuming a
computer capable of testing a pin assignment in a billionth of a second,
your program will still take roughly six hundred years to run.

What to do? Do you tell your boss you can't solve the problem? You
could get fired. Do you tell your boss that it is impossible to do better,
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so there's no point firing you? She might not fire you but she'd need
proof. Besides, Yoyodyne frowns on bosses who don't produce; so, even
if you could prove that it can't be done faster, she'll want results anyway.
What to do?

Programmers were put in exactly that position about forty years ago.
The digital computer had finally been invented and big business, big gov-
ernment, and big armies wanted it put to work. Unfortunately, nobody
knew that some problems are computationally harder than others; some
are so hard as to be unsolvable in practice. So programmers were asked
to produce efficient algorithms for problems that we know as the travelling
salesman problem, the knapsack problem, and the graph colorability prob-
lem, little knowing that such problems seem to be computationally hard.

So we have four questions: Are some problems much harder than oth-
ers? If so, which ones? How much harder are they? And if they are much
harder, what do we do? To begin answering these questions we next look
at the history of understanding feasible problems. As we see next, today
"feasible" is identified with "has a polynomial solution."

Why Polynomials?

In 1965, Jack Edmonds, a mathematician now at the University of Waterloo,
and, independently, Alan Cobham, now at an IBM research center, gave a
definition of a feasible problem: A problem is feasible if it has a solution
whose cost is at most polynomial. Here's why:

" Polynomials are closed under composition and addition.
This corresponds to our intuitive feeling that if we have two feasi-
ble algorithms then we can use one as a subroutine of the other to
obtain another feasible algorithm (closure under composition), and,
if we run them one after the other then we will also obtain a feasible
algorithm (closure under addition).

" All sequential digital computers are polynomially related.
That is, if we can solve a problem in f(n) time on one machine we
can solve it in some polynomial of f(n) time on another machine.
Thus, if a problem has a polynomial solution on any current digi-
tal computer, then it has a polynomial solution on any other digital
computer. Therefore, it makes sense to call a problem polynomial,
independent of the particular machine it is run on.2

2Perhaps Shakespeare would say: What's in a mainframe? A computer by any other name

would be as fleet.
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* In general, a polynomial algorithm will do a feasible amount of work.
Conversely, in general, if an algorithm is exponential (or worse) then
it is feasible for small inputs only.

This last observation is an empirical one and it does not hold in all cases.
For example, as we see next, an algorithm called simplex is fast in practice
but exponential in the worst case. Conversely, most polynomial algorithms
that grow faster than a cubic are almost useless. However, we can at least
say that most exponential algorithms grow too fast for us to solve them for
any reasonable size. The theory of hard problems is still young; it is a first
approximation only. Similarly, we say that one algorithm is "Worse" than
another if its worst cost is larger; but, as we've seen in previous chapters,
in practice many other things can be important.

Are Exponentials Really So Bad?

In 1947, the American mathematician George Dantzig published an algo-
rithm solving optimization problems expressible as linear programs. A lin-
ear program is a collection of constraints in n variables, each of which is
linear in each of the variables, together with a linear function to be max-
imized. Many optimization problems can be phrased as linear programs;
in particular, Dantzig used his algorithm to solve logistics problems for the
U.S. Air Force. Dantzig's algorithm, called simplex, was a great step for-
ward since, in practice, it was much faster than previous brute force algo-
rithms. However it is possible to show that simplex's worst cost is expo-
nential in the number of variables (but these inputs are rare in practice).
The search was on for an algorithm with a "more reasonable" worst cost.

In 1979, the Russian mathematician Leonid Hadjan ("kha-chi-yan")
building on work by other Russian theorists A. Juri" Levin, N. Z. Shor,
D. B. Judin, and A. S. Nemirovskii, proved that an algorithm, called the
ellipsoid algorithm, was polynomial. The ellipsoid algorithm is like a multi-
dimensional binary search. Unfortunately the degree of the polynomial
is too high for real problems, and simplex, although exponential in the
worst case, is fast in practice. In 1984, Narendra Karmarkar, a computer
scientist at AT&T Bell Labs, improved the ellipsoid algorithm to run well
in practice. Called projective scaling Karmarkar's algorithm is polyno-
mial; it outperforms the ellipsoid algorithm; and it is competitive with
simplex on practical problems. Since then several new polynomial time
algorithms have been proposed, and these new algorithms beat simplex
as the problem size grows.

So although simplex is exponential, the linear programming problem is
polynomial. This difference is important because no computer can per-

form more than about 1015 switches per second. Beyond that speed, the
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frequency of visible light, the energy needed for the switching will break
the chemical bonds holding solids together. Since we're already in the 109
operations per second range we can expect at best a million-fold speedup.
But what's a factor of a million to an exponential algorithm? 2Y grows by
a factor of better than a million whenever n increases by twenty. And that
is the difference between exponentials and polynomials; although different
computers have different speeds, exponentials grow so fast that they dwarf
these differences.3

7.3 Turing Machines

The final test of a theory is its capacity to
solve the problems which originated it.

George Dantzig, Linear Programming and Extensions

Now let's try to recreate Turing's thoughts about computation in 1936. In
those days, a formal system, as defined on page 417, was not yet well-
defined, for there was as yet no agreed upon meaning for computation.
This was essential because to say unequivocally that something was true,
Hilbert wanted a "finitary way" (an algorithm) to be used. This, for
instance, was why the number of axioms and the number of inference
rules had to be finite; Hilbert stipulated that there must be algorithms to
decide whether something is an axiom, whether something is an inference
rule, and whether one statement followed from another. Only so could he
be assured that a theorem, once proved in a formal system, was correct.
To solve Hilbert's decision problem, and to put bite into then still some-
what vague idea of a formal system, Turing had to answer the question:
What does it mean to compute something?

Consider solving a problem, proving a theorem, or writing an algorithm,
with pencil and paper. Obviously some things don't matter. It doesn't (or
shouldn't) matter what color the paper is; whether we write left to right,
right to left, or up and down; or whether we're making marks with a pen-
cil, pen, brush, lipstick, typewriter, or car tire. It doesn't even matter if
we're using paper; we can perceive symbols in other ways (say, by hear-
ing them spoken, or by feeling them as in braille), and we can alter them
or add to them without writing (say, by speaking them, or by acting them
as in mime or charades). What matters is that we're perceiving symbols

3Since we're dreaming about speed, nothing can happen faster than about 10-23 seconds;
this is the time light takes to cross the diameter of a proton. 1023 is only one hundred million
times faster than 1015, and 2n eats up that whenever n increases by twenty-seven.
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fixed on some medium, and we can create or delete symbols, perhaps
based on symbols already there, plus some thinking.

Since the medium doesn't matter, let's fix on paper and pencil. We
don't need two-dimensional paper; our paper can be a tape divided into
squares. This lets us ignore inessential details like how to handle margins
and line spacing. Also, we can restrict our symbols so that each fits within
one square; so there is only one symbol per square. Now we can make
the number of different symbols finite, because if there were an infinite
number of symbols it would take us an infinite time to distinguish between
them. Further, let's extend the tape to infinity to make sure there is enough
paper. It is only necessary for us to be able to move left or right on this
tape and look at symbols. Now we can reduce "looking at symbols" to
looking at one symbol at a time. In sum, we can reduce ourselves to:

"* moving left one square,

"* moving right one square,

"* staying in the current square,

"* reading the symbol on the current square,

"* erasing the symbol on the current square, and

"* writing a symbol on the current square.

We decide which of these operations to do next based on the symbol on
the current square and our current state of mind.

Now how do we model "states of mind?" Again, some things don't mat-
ter. It doesn't (or shouldn't) matter whether it's a nice day; whether we
are happy or sad; or whether we are in Fiji, in Guatemala, or on the first
Mars mission. Let's assume that we have only a finite number of possible
states of mind.' Now we can reduce "solving the problem" to reaching any
one of a particular set of states previously designated as accept states. We
can solve a problem that requires an answer by reaching an accept state
and taking whatever is left on the tape as the "answer." So now we have
two more operations:

"* change state depending on the current symbol and current state, and

"* stop when we reach any accept state.

We begin with the problem written out on the tape, using the symbols
we've fixed. Since we may have to read all these symbols to solve the

4This might seem reasonable because our brains have only a finite number of atoms, but the
issue is still clouded because an atom can be in an infinitude of quantum states.



426 7 INFEASIBILITY

problem, the problem must be finitely describable. Further, once we get
going we don't stop to revise our thinking process. Nothing new occurs
to us beyond our original finite thought process and the finite description
of the problem. Both of these assumptions are debatable as models of
human thought.

5

Now how do we handle "guessing?" It seems as if there is a difference
between guessing (intuition, creativity, insight) and mere routine manipu-
lation. But if there are only a finite number of options there is no difference
in ability if we disallow guessing since we can always try all possibilities;
it will merely take us longer. So there is no difference in ability, but it's
not clear whether there is a difference in speed. So let's make two kinds
of machines: the normal kind executes a fixed program and the other kind
does the same but can also guess (always correctly!). The first kind corre-
sponds to what we've called a predictable algorithm throughout this book,
but the second is magic.

An Exercise in Self-Control

In sum, a turing machine is a no-frills digital computer. There are two
kinds of machine: normal and magical. A normal turing machine can read
one square at a time of an infinitely long tape, and it can be in any one of a
finite number of states. For each possible state and symbol on the current
tape square it can write a symbol belonging to a finite set of symbols,
move left one square, or move right one square. It has no choice at each
step in its computation; it can follow only one branch. Finally, it stops
if it reaches an accept state, but it may never reach an accept state for a
particular input.

The definition of an algorithm given in chapter one (page 13) is restric-
tive; turing machines give us a prescriptive definition of algorithms. The
definition in chapter one tells us what an algorithm is not; a turing machine
tells us what an algorithm is .6

A magical, or non-deterministic, turing machine is like a normal one that
can follow an arbitrary number of branches at each step. We can think of
it as a computer that can simultaneously perform an arbitrary number of
different computation paths (sequences of states and tape moves depen-
dent on the input). This is different from a parallel computer; a parallel

5There are other, more philosophical, questions: Are symbols necessary for any computation,
or just necessary for human understanding of the computation? Is there a difference between
the machine and the program? Is there a difference between following a list of instructions
and creating it? What does it mean to "understand" what the machine is doing?

6"She was a phantom of delight/ When first she gleam'd upon my sight;/ ... And now I see

with eye serene/ The very pulse of the machine." William Wordsworth, Perfect Woman.
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00

Figure 7.1 A turing machine

computer has only a constant number of processors, so it can't work on
an arbitrary number of things simultaneously. For a technical reason that
we use later (page 436), it is desirable (and possible) to configure a
magical machine so that at each branch in its computation path it has to
choose between only two alternatives, even if we have to make the two
alternatives the same. So we can think of its computation paths as a binary
computation tree. Since it essentially follows all computation paths in its
computation tree, a magical turing machine accepts an input if any com-
putation path ends in an accept state.

We can also think of a magical turing machine as a normal turing
machine with a magic guessing module. The guesser first guesses a cor-
rect computation path, then the normal part of the machine performs the
guessed computation. ("Non-determinism" is a misleading name; it should
be called either "infinite parallelism" or "magic.") 7

There is no difference in the ability of the two kinds of machines-
whatever we can do with one we can do with the other. But it is not
clear whether there is a difference in speed; perhaps magical machines are
always faster. If there is a difference in speed between these two classes
of machines then, roughly speaking, it should correspond to a difference
between guessing and searching. The central question in theory today is
whether there is a difference.

We can use turing machines as our model of computation where time
is measured as the number of state transitions the machine goes through,

7 Turing did not add non-determinism to his machines; that had to wait until 1959 when
Michael Rabin ('rah-been") and Dana Scott did so for technical reasons. Rabin, a German-
born Israeli computer scientist now at Harvard and the Hebrew University in Israel, is one of
the originators of probabilistic algorithms. Both Rabin and Scott are major contributors to the-
ory, and both were students of Alonzo Church at Princeton. Scott is an American computer
scientist now at Carnegie-Mellon University.
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and space is the number of tape squares it reads or writes. A computation
runs in polynomial time if the number of state transitions is a polynomial
of the length of the input (and similarly for space).

Granted that it's reasonable to classify problems depending on whether
their worst cost is polynomial, why should we concentrate on turing
machines? Why not something more powerful? Or why not a real
machine? Well, first, if we try to model real machines we sink into a
swamp of detail (for example, clock cycle counting). Turing machines
are just plain simpler. Second, our theory cannot be too dependent on any
real machine for then it is applicable only to that machine. Also, which
company's machine do we pick as the standard machine? And finally,
there aren't any more powerful machines. Although apparently primitive,
turing machines are polynomially related to every other known digital
computing device. All computers are created equal, up to a polynomial.

After sixty years of trying to find a stronger model of computation, com-
puter scientists now accept the Church-Turing hypothesis: every algorithm
can be described by (or implemented on, or is equivalent to) a turing
machine. This is not a provable hypothesis since it depends on our intu-
itive understanding of the word '"lgorithm." But if we accept it, there is
no point working only with turing machines; that's like trying to debug a
program from its machine code-it's possible but tedious, prone to error,
and dull. Instead, from now on let's accept the Church-Turing hypothe-
sis and write algorithms in a decent language, as we've done in previous
chapters. By the Church-Turing hypothesis all such algorithms are realiz-
able on a turing machine. Further, there is no longer any need to refer to
turing machines at all; let's just say 'Walgorithm" and be done with it.

7.4 Birth of A/'P-Completeness
And what rough beast, its hour come round at last,

Slouches towards Bethlehem to be born?

W. B. Yeats, The Second Coming

Now that we've settled on a model of computation, let's formalize the
Edmonds-Cobham intuition that a problem with a polynomial solution is
"easy," and one whose every solution grows faster than every polyno-
mial is "hard." Since we've decided to call polynomial computations easy,
our first approximation to a notion of hardness is to ignore polynomial
transformations.

Let's say that problem P1 is polynomially transformable to problem P 2
if we can transform any instance of P1 into some instance of P 2 in poly-
nomial time. Thus, in principle, we could solve any instance of P1 by
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transforming the instance, in polynomial time, into an instance of P 2 , then

solving the instance of P2.
So if P2 is easy then P1 is also easy-because we can solve any of P1 's

instances by turning it, in polynomial time, into an instance of P2 . If P2
is hard we cannot say that P1 is hard; there may be some other way to
solve P 1. But we can at least say that it is no harder than P2. So let's
denote the polynomial transformability of P1 to P 2 as

P1 < P2

To prove that P1 is polynomially transformable to P 2 we have to find
a polynomial time algorithm that transforms any instance of P1 into an
instance of P2. If we can also polynomially transform P2 to P1 then the
two problems are polynomially equivalent. They cost the same, up to a
polynomial. And this is true irrespective of whether they are easy or hard.

Pause Suppose P1 :5 P2. Let I, be an instance of P 1 , and let 12 be the instance
of P2 produced by the transformation. Is it possible for 12 to be exponen-
tially longer than I,?

So far, almost all problems that are solvable on normal machines before
the heat-death of the universe when their inputs are of size a million are
polynomial. Let's say that these problems are in P, the class of problems
solvable in polynomial time. Formalizing the Edmonds-Cobham intuition,
let's say that a problem is computationally hard if it isn't in P; that is, if it
does not have a polynomial time solution.

Many problems belong to a possibly larger class than P. These prob-
lems are in ANP, the class of problems solvable in polynomial time, but on
magical machines. P is a subset of ANP, since a normal algorithm is just a
magic one that doesn't guess. But it is unknown whether P equals N(P.
The term ANP is short for "ANon-deterministic Polynomial time," not "non-
polynomial;" that would make sense only if P 0 ANP, and even then it's
false since P is a subset of ANP.

AKP-Complete Problems

Now that we've clarified what we mean by a hard problem, let's see if
we can identify them. First, let's fix a finite set of two or more symbols
as our alphabet. (Any non-empty finite set will do.) A finite sequence
of symbols of the alphabet is a string; a set of strings is a language; a
set of languages is a class. Let's use uppercase italic letters for languages
and calligraphic uppercase letters for classes. Now that we've settled on
an alphabet, the class of all languages with a particular property means
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the subset of languages, within the set of all languages over our chosen
alphabet, that have that property.

Now we're ready for problems. Here is the satisfiability problem: Given
a set of strings of upper- and lowercase letters, where if one form of a letter
appears in a string its other form does not, is it possible to select one letter
from each string, without selecting both the upper- and lowercase versions
of some letter? For instance, the set of strings

{ AbC, Ac, aBc, bC }

is satisfiable (for example, choose A from the first two strings, B from the
third, and C from the fourth), while the set

{ ab, aBc, Abc, AB }

is not.

Pause How many letter choices satisfy the first example? How would you find a
satisfying choice in general?

Turning this into a language acceptance problem, we pose the problem
of satisfiability acceptance: Given a string made up of strings of letters
separated by a special symbol, tell whether it is in the set of such strings
that are satisfiable. For instance, the string

AbC#Ac#aBc#bC

belongs in the language, but the string

ab#aBc#Abc#AB

does not.
We can also phrase the acceptance problem as a problem in logic: Can a

given conjunctive proposition composed of disjunctions of variables, where
each variable can have only one of two logical values (true or false), ever
be true (be satisfied)? For example, to a logician the above two examples
would be: Are either of the two following propositions satisfiable?

(a V / V f) A (a V -y) A (a V /V ') A (0 V •,)

and

(a V A) A (a V ý V -y) A (6 V v-y) A (a• V /)
Satisfiability acceptance is in AKP since for any instance we can always

guess a suitable sequence of letters, then verify, in polynomial time, that
that sequence satisfies the instance.

Long Pause[ IWhat if there is no satisfying sequence?
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Satisfiability is an abstraction of an important problem: How can we tell
that our beliefs are consistent? For example, suppose that two of the many
beliefs we have about the world are:

"* All grass is green.

"* All hay is grass.

Then when we try to add the belief

- All hay is brown.

we no longer have a consistent set of beliefs.
Notice that it is easy to check our beliefs for consistency if the only

possible inconsistency is between pairs of beliefs. It's easy, for instance,
to detect inconsistency in any set of beliefs, no matter how large, if we
only had to worry about finding pairs like

"* All grass is green.

"* Some grass is brown.

This only requires work at most quadratic in n, the number of beliefs.
However, when inconsistencies can depend on an arbitrary number of
beliefs the subsets that we have to check grows as 2". And so far we
seem to have no better way to check than to examine all possible combi-
nations of beliefs to see if any are inconsistent.

The acceptance problem is better than the original problem because it is
a decision problem. (See the list of problem types in chapter one, page 9. )
We construct the decision problem so that it is no harder than the optimiza-
tion problem we really want to solve. So if we manage to prove that the
decision problem is hard, then we know that the optimization problem is
at least as hard. Also, analyzing only decision problems lets us ignore the
size of the output since it is always either "yes" or "no." In some optimiza-
tion problems we could confound the inherent hardness of the problem
with the time necessary just to list its solution; for example, in the towers
of Hanoi problem we need exponential time to list the solution. Once we
get the supposedly simple case of decision problems straight we can worry
about more complex kinds of problems.

Further, many optimization problems can be feasibly solved if their
associated decision problem can be feasibly solved. For example, in
chapter six (page 392) we used the graph colorability problem to con-
struct digital signatures. If deciding whether a graph can be colored with
a particular number of colors is easy, then finding a graph's chromatic
number is also easy. All we have to do is ask whether the graph can be
colored with [n/2J colors. If yes, then we ask whether the graph can be
colored with [n/4J colors, otherwise we ask whether the graph can be
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colored with [3n/4] colors. And so on. This gives us the graph's chro-
matic number after at most a logarithmic number of uses of the solution
of the decision problem. So determining the optimal coloring is (up to
a polynomial) no harder than deciding whether a particular number of
colors suffice.

Given a language acceptance problem P and a class of problems C, P is
C-hard if it is at least as hard as every problem in C. If P is also in C then
P is C-complete.

This meaning of the word "complete" rightly baffles the non-initiate of
recursive function theory that part of mathematics developing the proper-
ties of the functions developed by Herbrand, Godel, and Kleene. "Com-
plete" is used here to mean that a solution to any problem in the set can be
applied to all others in the set. It is different from the notion of complete
proof systems discussed earlier. Unfortunately tradition requires one word
to mean two different things .8

To avoid constantly saying that a particular language acceptance problem
is hard, let's just say that the language in question is hard, since all we'll
be doing with languages is trying to accept them. We've defined hardness
in the class A/P up to a polynomial transformation, so the language L is
A/P-complete if:

"* L is A/P-hard.
That is, given a polynomial algorithm accepting L, then for every
language in A/P there is a polynomial algorithm accepting it.

"* L is in A/P.
That is, given a string we can tell whether it is in L in polynomial
time.

It seems difficult to prove the first property since we must prove it for
every language in A'P. Fortunately, in 1971 Stephen Cook, an American-
born Canadian computer scientist now at the University of Toronto, showed
that if satisfiability is solvable in polynomial time, then all problems in A/V
are solvable in polynomial time! Therefore, using the Edmonds-Cobham
notion of hardness, satisfiability is at least as hard as any other problem
in A/•. At about the same time, Leonid Levin, a Russian-born American
computer scientist, then in Russia and now at Boston University, indepen-
dently proved a similar result. This is the Cook-Levin theorem.9

8,When I make a word do a lot of work like that,' said Humpty Dumpty, 'I always pay it
extra.' Lewis Carroll, Through the Looking-Glass.

9 The Cook-Levin theorem might be stated: I can't get no satisfaction soon. An obvious
corollary of a well-known theorem by the Rolling Stones.
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Cook showed how to polynomially transform any instance of any prob-
lem in A/P into an instance of the satisfiability problem in such a way that
the original problem instance has a solution if and only if the satisfiabil-
ity instance has a solution. Thus, we can polynomially transform every
problem in A/P to satisfiability. Therefore, up to a polynomial transfor-
mation, satisfiability is at least as hard as every other problem in A/P. So
satisfiability is A/P-hard. And since satisfiability is in A/p, satisfiability is
A/P-complete.

Pause Why is it useless to show that given an instance of the satisfiability problem,
we can polynomially transform it to an instance of some other problem
in A/P?

So to show that a problem in A/P is A/P-complete we only need show
that the problem is at least as hard as satisfiability. Further, once we
have proved that some problem, say P, is at least as hard as satisfiabil-
ity then, given a new candidate problem, we can try to show that it is at
least as hard as satisfiability or P. So the more problems we prove to be
A/P-complete, the more ammunition we have to prove the next candidate
problem A/P-complete!

This idea rose to prominence in 1972 when Richard Karp, an American
computer scientist now at the University of California, Berkeley, expanded
the set of known A/P-complete problems by showing that many important
and well-known problems are A/P-complete. A/P-complete problems are
the hardest problems in A/P, and they are suspected to be computationally
hard. So far the only known way to solve them is by trying some large
fraction of all combinations of the input. It is generally believed, but not
proven, that we will never have a better algorithm.

If a problem is in A/P then it means roughly that checking a given solution
takes polynomial time. Butfinding a solution in the first place seems hard.
If P = A/P then it suggests that every problem that is easy to check is also
easy to solve! Hard to believe! But P may equal A/P and A/P-complete
problems may still be too hard in practice. Ideally, we'd like to find not
only that P = A/P, but that A/P-complete problems are solvable with prac-
tical (say, less than cubic) algorithms. This is unlikely considering how
long we've been trying.

On the other hand, the linear programming problem was long thought to
have only exponential solutions, then the ellipsoid algorithm came along
and showed that the problem is polynomial. So we have to be careful.
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However, even without proof, the average efficiency of simplex could have
led us to believe that linear programming really was easy, we just hadn't
found a polynomial solution yet.

If a genius finds a short proof of a theorem that's been open for hun-
dreds of years, everyone can check the proof. Naturally, if a theorem has
no short proof then it's not unreasonable that we need a genius to find
a proof of the theorem. But does it take a genius to find a proof of the
theorem if we know that checking a proof of the theorem is easy? This is
the question of whether P equals APP if we replace theorem by problem,
proof by algorithm, short by polynomial, and long by exponential.

Suppose we keep score on a problem. Every time we solve a new
instance of it we enter the instance and its solution in an ongoing table. If
there is a pattern to the table entries then that pattern will help us predict
some structure in the solution to a new instance. And that will reduce the
computational cost of the problem, if we can test an instance for the pattern
in a reasonable time. If no such pattern exists, or if there is a pattern only
for a small portion of the entries, or if the pattern is widespread but it
costs too much to test an instance for it, then each new instance requires
an almost exhaustive search of the exponentially many possible cases.

So our questions are: If the problem is APP-complete, must there be a
pattern to the entries? If there is a pattern, is it polynomially testable? If
there is a polynomially testable pattern, will we ever find it? It is arguable
that if none of the solutions of the instances of a problem have something
in common that we can test in a feasible amount of time, then it isn't a
"problem" at all! To us it's just an arbitrary collection of instances.

7.5 Working out the Hierarchy

Mathematicians are like Frenchmen:
whatever you say to them they translate

into their own language and forthwith
it is something entirely different.

Johann Wolfgang von Goethe,

Maximen und Reflexionen

In 1964, work by Juris Hartmanis and Richard Stearns, then at the General
Electric Research Laboratories, followed by work of Michael Rabin, then
Manuel Blum, formalized the notion that we've studied all through this
book-the complexity of computing something. The idea is to identify all
problems that can be solved using a particular amount of resources (for
example, linear, quadratic, polynomial, exponential). Each such class of
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problems is a complexity class. P and A'P are complexity classes. Trying
to understand what's special about AKP-complete problems (What makes
them so hard? Are they really hard?), let's define some more complexity
classes of languages. We're about to explore the structure of a poset of
interrelated classes of languages ordered by containment.

First let's define two problems that we grew intimate with in the last
chapter to use as examples. Compositeness acceptance is the problem
of accepting the language of bit strings that are composite numbers when
interpreted as binary numbers. Similarly define primeness acceptance. The
compositeness problem is in A7P since for any n we can guess k < n and
check (in polynomial time) that k divides n. And although it isn't as easy
to see why, the primeness problem is also in A'P.

coAd7 and 7Pspace

The complement of a language is the set of strings over the alphabet
that aren't in the language. For example, compositeness and primeness
are complements. The class of languages whose complements are in P
is called coP; the class of languages whose complements are in APP is
called coK7P. Now coP = P, but we don't know whether coPfP = APP.
The question is interesting because its answer may tell us whether P = APP.

PauseWhy is coP =P?

It is possible that coA/P A=/PP yet P 7ý APP. However closure under
complementation restricts which problems can be APP-complete. For
example, both compositeness and primeness are in A-P, so both are
in coArP. Now, it is possible to show that if any APP-complete problem
is in coal5P then co7PP = APP. So compositeness can't be APP-complete
unless co5PP = APP. But this doesn't mean that either problem is in P.

P =.5PP if and only if some A7P-complete problem has a polynomial
solution. Even if the complement of every APP-complete problem is also
in ArP (that is, if coP = A'P) that does not mean that any of them are
in P. In sum, coAP7 = AVP implies some restrictions on APP-complete
problems and their complements, and coAPP 0 APP implies that P 0 APP.

Pas Why is this true? (Hint: coP = P. )

The class of languages accepted with a polynomial amount of space is
called P space. It is possible to show that this is the same as those languages
accepted in polynomial space on a magical machine, so P space is about as
big a complexity class as we can ever care about in practice; even if we
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wanted to solve a problem outside of Pspace, we couldn't. It is possible
to show that

P C A/P C Pspace

PP, BPP, ZPP', and RP

Unlike infallible algorithms, we make mistakes. For example, courts can
make two types of errors: convict the innocent and acquit the guilty; statis-
ticians call these type one and type two errors. Can we use this more real-
istic view of decision making in computation? In 1977, John Gill, then
a student of Manuel Blum, developed the theory needed to talk about
this idea.

A probabilistic turing machine is a non-deterministic turing machine that
accepts an input if two-thirds or more of its possible computation paths on
the input end in accepting states. The actual proportion of acceptances
isn't important, as long as it's above one-half.

The class of languages accepted in polynomial time by a probabilistic
algorithm is called PP (for probabilistic polynomial time). It is possible
to show that

P C ACP u coAP C PP C Pspace

Now consider the class of languages where for each language L there is a
probabilistic turing machine such that for every string over the alphabet:

"* the string is in L if and only if at least two-thirds of the machine's
computations accept the string, and

"* the string is not in L if and only if at least two-thirds of the machine's
computations reject the string.

This class is called &3PP (for bounded-error probabilistic polynomial
time).

Ideally, the justice system should never make errors, but in practice we
try to make as few type one errors (incorrect convictions) as possible,
and pay the penalty of increasing the chance of type two errors (incor-
rect acquittals). The subclass of BPP whose languages are accepted in
polynomial time by probabilistic algorithms that never accept strings not in
the language, and that may reject strings in the language, but only at most

1°As we observed in chapter three, page 209, in this book a probabilistic turing machine
is not necessarily a randomized one (it does not necessarily use random numbers), and
a randomized turing machine is not necessarily a probabilistic one (it does not necessarily
make mistakes).
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one-third of the time, is called 7ZP (for random polynomial time). It is
possible to show that

P C •Z7P C MP n B7P7

The probabilistic primality test we developed in chapter six (page 372)
shows that compositeness is in RP; if the algorithm's input is prime, it
will not lie, it will say "pseudoprime," but if its input is composite, it may
not say "composite."

The justice system tries to reduce the number of wrongful convictions
even though that means an increase in the number of wrongful acquittals.
But the chance of wrongful conviction is never zero. To reduce that risk
we have appeals courts; each successive trial is meant to be a completely
independent test of the defendant's innocence. Further, prosecutors also
get to repeat trials, so we also reduce the chance of wrongful acquittal. As
a statistician would say, we can reduce the chances of both types of error
if we increase the sample size. This simple yet powerful idea leads us to
look for algorithms that we can repeat. By rerunning such an algorithm
we can reduce the chance that we make a type one or type two error as
much as we wish. The more we repeat it and get the same result, the
higher our confidence grows that it isn't making an error.

So the class we're most interested in is the intersection of RJP and coRTP;
it is called ZPP (for zero error probability). It is possible to show that
the primeness problem is in ZPP and

,P C ZPP = RP n coRP C AP n co!P CPP C Space

'P

In 1985, Ldtszl6 Babai of the E6tv6s University in Hungary and the Univer-
sity of Chicago, and, independently, Shafi Goldwasser, Silvio Micali, both
of MIT, and Charles Rackoff of the University of Toronto, published a rev-
olutionary idea-that of interactive proof

An interactive proof is a game with two players: a prover and a ver-
ifier; say, Alice and Bob. Alice is infinitely powerful and she wants to
convince Bob that a particular string belongs to a particular language. Bob
can do only a polynomial amount of work to verify Alice's claims, and
both players can use a (shared or private) stream of random numbers.
Since Bob can take only polynomial time, Alice's messages must be poly-
nomial in length (he couldn't read longer messages). Bob and Alice take
turns sending messages to each other, and Bob accepts his input if Alice
can convince him with overwhelming circumstantial evidence that his input
belongs in the language he is supposed to accept.
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The class of languages for whom membership can be decided by an
interactive proof is called 27?. It contains both A"P and B7PP since we
get A/'P if we disallow random numbers, and we get 3'PV if we disallow
interaction. See algorithm 7.1 for an example interactive algorithm. Since
determining whether two graphs are non-isomorphic is known not to be
in AiT1, this algorithm shows that A/P is a proper subset of 27P.

GRAPH NoN-IsoMoRPHISM (Graph1 , Graph2 , k)
{ Interactively determine that Graph, is not isomorphic to Graph2.
k > 1 is the prefixed number of rounds. }

repeat
verifier:
privately and randomly choose i E { 1, 2}
randomly permute Graphi to obtain an isomorphic graph Graph
write Graph on a tape visible to the prover
prover:
determine that Graph is isomorphic to Graphj, j e {1, 21
write j on a tape visible to the verifier
verified: if (i $ j) then reject and halt

until k rounds
verifier: accept and halt

Algorithm 7.1

In 1990, Carsten Lund, Lance Fortnow, Howard Karloff, all of the Uni-
versity of Chicago, Noam Nisan of MIT, and Adi Shamir of the Weizmann
Institute in Israel, showed that every language in Pspace has an interactive
proof. Thus, 1P = Pspace! (See figure 7.2. )

Intuitively, this amazing result says that almost any problem we will ever
want to solve has a cheap probabilistic verification. (Of course, it doesn't
tell us how to find that verification. ) Intuitively, A/'P is the class of lan-
guages with feasible proofs of membership, and IP is the class of lan-
guages with feasible probabilistic proofs of membership. In previous chap-
ters we've seen the power of letting our algorithms err a little (for exam-
ple, in primality testing), but interaction adds even more power. Adding
probabilism grows the space of feasible problems from P to B3PP, but
adding interaction as well we hit the roof, Pspace!

In 1988, Michael Ben-Or, of the Hebrew University of Israel, Shafi Gold-
wasser, her then student Joe Kilian, both of MIT, and Avi Wigderson of the
Hebrew University of Israel, introduced interactive proof systems with two
provers. Here, two all-powerful non-communicating provers convince a
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1'P = Ps paceI
PP

A/P B3PP co-.AP

7ZP KrPnco-KrP co-RIP

Z'pPI
P

Figure 7.2 Complexity classes ordered by containment

probabilistic polynomial time verifier in polynomial time that a particular
string belongs to a particular language. In 1990, Babai, Fortnow, and Lund
showed that a class of provably infeasible languages have two-prover inter-
active proof systems. (Languages that require exponential time on even
the magical kind of turing machine are definitely infeasible. ) This further
demonstrates the power of randomization together with interaction in fea-
sible provability.

Unsolvable Problems

There are problems even harder than those we've seen so far. Some are
so hard they aren't even solvable! This is like trying to climb a mountain
so tall that we would be in orbit halfway up. With our normal definition
of "climbable" such a mountain is unclimbablele." To repeat the moral we
drew from Russell's paradox: not everything we can say necessarily makes
sense; just because we can state a problem doesn't mean we can solve it.
Historically, the unsolvable problems were the first class of hard problems
to be identified. To find out more let's examine some of Cantor's work on
set theory.

Cantor's first triumph was in finding a good definition for equal sizes
of sets, even when sets are infinite. His definition, and the one accepted
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today, is that two sets, finite or infinite, have the same size if there is a
bijective function mapping elements of one set onto the other. From this
it follows that the set of positive and negative integers is the same size
as the set of positive integers, even though one is a subset of the other!
(See table 7.1. ) As we saw with the infinite apples problem in chapter
one, page 47, infinity is a dangerous place. Let's call a set with as many
elements as the integers countably infinite.

Pause Is the set of all integers bigger than four countably infinite?

1 2 3 4 5 6 7 8 9 10 ...

1 -1 2 -2 3 -3 4 -4 5 -5 ...

Table 7.1 The set of positive and negative integers is countably infinite

Cantor's second triumph was to show that not every infinite set is count-
able. Imagine a square array of zeros and ones. Take the top left to bottom
right diagonal of this array and complement every entry on the diagonal.
When looked at as a row, this complemented diagonal cannot be any row
in the array. (See table 7.2. ) This also works for infinite arrays once
there are countable number of rows. Here's why: If the number of rows
is countably infinite then we can index them with the integers. For any
row i, its ith entry must differ from the ith entry of the complemented
diagonal. Therefore, by induction, the complemented diagonal must differ
from every row, and so cannot be in the array. This is Cantor's proof by
diagonalization; he used it to show that the set of real numbers is uncount-
able, and so is "bigger than" the set of integers.

Now let's show that there are computationally unsolvable problems.
First, for every function we can phrase a problem that asks us to com-
pute the function for an arbitrary argument. Now consider the subset of
problems that can be described by boolean functions on the integers; that
is, the set of functions f such that f(n) is either zero or one. Suppose the
set of all such functions is countably infinite. Then there is a correspon-
dence between each function and each integer. Thus we can index the
functions with the integers, say with subscripts. Let's make each function
be a row in an infinite array whose columns are the integers. So f1 would
be the Pth function in this list, and its jth entry would be the value fJ(j),
which is either zero or one. We want to show that at least one boolean
function cannot be in this array.
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row

1 Fjj 1 1 1 0 0 1 1
2 1 [ 1 1 1 0 1 0 0

3 1 1 W-1 0 1 1 1 1
4 0 1 0 in 0 0 1 0
5 0 0 1 1 [W 0 0 1

6 1 1 0 0 0 [W 0 1
7 0 0 1 1 1 1 H 0

8 0 1 1 0 0 0 1

newrow 1 1 0 0 0 0 1 0

Table 7.2 Constructing a complemented diagonal

This is easy to do by complementing the diagonal. That produces a
boolean function defined on the integers, so it should be in the array.
But it can't be because for any function in the array, say f., fj(i) will
differ from the Pth value in the complemented diagonal. So the set of
boolean functions, which is only a tiny subset of the set of all functions,
is uncountable. Now if every program is a finite string of symbols, each
chosen from a single finite alphabet, then it is possible to show that the set
of all programs is countably infinite. So there are more problems than there
are programs to solve them. Thus, at least one function is not describable
as the output of any program, and so is computationally unsolvable.

Long Pause] Why is the set of all programs countably infinite? (Hint: Think of the
lengths of the programs. Another hint: Let k be the number of possible
symbols in the alphabet. Think of base k numbers.)

Similarly, Turing used the same idea to show that for any program that
claims to be able to tell if any program will stop, we can build a prob-
lem showing that the program cannot always tell. We might call this con-
structed problem a Dirty Harry problem. In the film Dirty Harry, Clint
Eastwood tells someone that he can run, but he can't hide; the Dirty Harry
problem tells the program: "You can run, but you can't decide."

There is a definite hierarchy of hard problems. Unlike K'P-complete prob-
lems, which are only suspected to to be exponential, there are solvable
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problems that are provably exponential. Further, there are solvable prob-
lems that are even worse than exponential, and there are unsolvable prob-
lems that are even worse than other unsolvable problems! For example,
Presburger arithmetic is the formal system of the positive integers together
with addition and equality alone. Deciding whether a statement in this
extremely simple system is true is doubly exponential (22n) in the length
of the statement. This is such a ridiculous amount of time that there is no
point even trying to solve the problem. Problems in the class "relativized
unsolvable" are so difficult that they aren't even solvable if certain other
unsolvable problems were magically solved by an oracle!

In sum, complexity theory has managed to classify problems into:

unsolvable
relativized unsolvable (oracle machines)

solvable
provably infeasible (example: Presburger arithmetic)
probably infeasible (example: satisfiability)
feasible

hard (normal optimization problems)
easy (normal computer science problems)

randomized easy (example: primality testing)
really easy (example: sorting)

Some things can't be done-either easily or at all.

7.6 Solving Hard Problems

There is no such word as 'impossible'
in my dictionary. In fact, everything
between 'herring' and 'marmalade'

appears to be missing.

Douglas Adams,

Dirk Gently's Holistic Detective Agency

Well we seem to have hit a brick wall. We've managed to show that some
problems we need solved are probably too hard to solve. What to do?
Over the course of this book we've discovered several algorithmic strate-
gies, but none reduce the worst cost of an AK'P-complete problem from
exponential to polynomial. Our only way out is to relax our requirements.

Relax the problem-use approximation algorithms and settle for an
okay solution. This works well for some problems.



7.7 What Is an Algorithm? 443

" Relax the solution-use randomized algorithms and give up pre-
dictability. This often reduces the worst cost to the average cost.

" Relax the method-use probabilistic algorithms and give up total cor-

rectness. This powerful idea is only now finding wider application.

" Relax the architecture-use parallel computation and give up sequen-
tiality. This is the wave of the present.

" Relax the machine-use analog computation and give up digital com-
putation. Some problems can be "solved quickly" using analog
devices. This may be the wave of the future.

7.7 What Is an Algorithm?

To think the thinkable-that
is the mathematician's aim,

C. J. Keyser

We started this trek in chapter one asking ourselves about models. Here,
at the end of our trek, we're asking ourselves the same question, only now
about models of computation instead of models of problems. Since at least
the great seventh-century Arabic algebraist abu Ja' far Muhammad ibn Msfis
al-Khwdrizmi, who gave his name to the word "algorithm," we've been
trying to decide what an algorithm is. Based on theorist's intuitive under-
standing of a "finitary way" (needed for formal systems), when we ask
for an algorithm to solve a problem, we usually have in mind something
with the following five basic properties:

"* Boundedness: it stops.

"* Correctness: it finds the right answer to the problem.

"* Predictability: it always does the same thing if given the same input.

"* Finiteness: it can be described in a finite number of steps.

"* Definiteness: each step has a well-defined meaning.

As programmers and analysts we want three further properties that theorists
used to consider secondary:

* Feasibility: efficient algorithms mean that we can run more programs
or solve bigger problems.
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"* Clarity: clear algorithms are easier to code and easier to prove cor-
rect.

"* Brevity: short algorithms mean less coding and greater confidence in
correctness.

Note that an algorithm can be unpredictable yet non-randomized; for
example, race conditions in real-time computation, parallel computation,
or distributed computation. And, in theory, an algorithm can be non-
randomized yet non-deterministic, since a non-deterministic turing machine
does not use random numbers; but such magic algorithms appear to exist
only in our imagination. So, we have three kinds of unpredictability arising
from random numbers, random interactions in asynchronous computation,
and magic. From now on let's ignore the magic.

Clarity and brevity are too complex, and still a little too ill-defined, for
further discussion here; other important, but even more ill-defined, proper-
ties are wide-applicability, modifiability, modularity, portability, expressibil-
ity, and elegance. Of the eight primary and secondary properties, above
all else, as analysts we want feasibility; previously that wasn't thought nec-
essary, only desirable. Within the past decade, in the interest of feasibility,
useful algorithms have been found that aren't correct or predictable in the
strict senses of the words. Can we, perhaps, gain by giving up bound-
edness as well? If we stay within our current model of computation, it is
unlikely that we can give up finiteness or definiteness anytime soon.

Probabilistic algorithms tradeoff a little non-correctness for a lot of speed.
Can we tradeoff a little non-boundedness for even more speed in parallel?
We've inherited a view of the world from Hilbert's attempt to save mathe-
matics that is skewed toward exact results. This dependence was necessary
to get us this far-we now understand computation much better because
of our theory-but Hilbert's view may have outlived its usefulness. It was
reasonable in the days of sequential machines to define an algorithm as ter-
minating and correct. For, the program implementing that algorithm would
be run on only one machine and we naturally wanted it to stop and to give
the right answer. But if you only do what you've always done, you'll only
have what you've always had.

The problem with parallel computers presently is that we usually try to
make them run one algorithm split into little pieces. This forces us to make
independent processors work on the problem in concert and that forces us
to make them communicate. Which is okay on the old-style von Neumann
single processor machines, but in massively parallel machines, communi-
cation costs more computation. Perhaps we haven't fully exploited parallel
computers yet because we still live in Hilbert's shadow.
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A parallel machine can run many instances of one algorithm. This is
particularly easy when the algorithm is randomized, since each instance
can then be syntactically the same, except for a sequence of coin flips. So
on a parallel machine it is not unreasonable to have non-bounded algo-
rithm instances. All we care about is that at least one be guaranteed to
stop, or failing that, that chances are good that at least one will stop in
a specified time. With such a bound in hand we can start the family of
algorithm instances and if none terminate in the time period we can kill
them all and start over. Further, we can do the same thing on sequential
machines. (In fact, in some sense that's what we do now whenever we
use a randomized algorithm: we're running one instance of an algorithm
family of instances. )

Finally, what does it mean to say that an algorithm gives the "right"
answer? We develop a program specification then say that the program
is correct if we can verify that the program satisfies the specification. But
the specification is itself a "program," albeit in logic and intended to be
run on sophisticated analog computers called "humans." Who checks the
humans? It doesn't help to automate this checking, for who checks the
checker? The Romans faced this problem millenia ago-Caesar's wife must
be above suspicion, for who watches her watchers? If relaxing correct-
ness, boundedness, and predictability can increase average feasibility, the
gain seems worth the cost, particularly on parallel machines. These are
unsettling ideas, but if we can't give up a possession, we don't possess it,
it possesses us. Winston Churchill used to say that perfectionism is spelled
"paralysis ."

In sum, there appear to be five reasonable algorithmic dimensions: fea-
sibility, correctness, boundedness, predictability, and randomizedness. The
last dimension is binary: an algorithm either uses random numbers or it
doesn't. But for the other four dimensions we can ask for a continuum
of behavior. For instance, for the feasibility dimension an algorithm can
be: always feasible, feasible on most inputs, feasible on a fixed subset of
inputs, usually infeasible even for fixed inputs, or always infeasible. And
similarly for correctness, boundedness, and predictability.

With these dimensions in mind, there seem to be six natural kinds of
algorithm.

Classical algorithm:

"* May be very slow.

"* Never lies.

"* Always stops.

"* Always predictable.
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* Doesn't use random numbers.

Heuristic algorithm:

" Always fast, if it stops.

"* May not solve the problem. (Usually this is dependent on the input
and the condition is usually difficult to check.)

"* May not stop.

"* May not be predictable.

"* Sometimes uses random numbers.

Approximation algorithm:

"* Always fast.

"* Gives a "near" answer to the posed problem, or the answer to a "near"
problem.

"* Always stops.

"* Always predictable.

"* May use random numbers.

Randomized algorithm:

"* Usually fast.

"* Never lies.

"* Always stops.

"* Usually unpredictable. (Often uses sampling.)

"* Uses random numbers.

Probabilistic algorithm:

"* Always fast.

"* Usually tells the truth.

"* Always stops.

"* May be unpredictable.

"* May use random numbers.
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Ergodic algorithm:

"* Always fast, if it stops.

"* Usually tells the truth.

"* May not stop.

"* Unpredictable. (Each repetition is independent.)

m Uses random numbers.

The odds are that P z AKP, and even if not, it's unlikely that all prob-
lems in Ag5P will have feasible solutions. This suggests that we should start
reducing the importance of correct, bounded, predictable, and sequential
algorithms in favor of more radical algorithms that are less safe, but more
feasible. This is perhaps the end of an era. As with Kent in King Lear, we
must now shape our old course in a country new.

7.8 What Is a Proof?
Mathematical thinking is, and must remain,

essentially creative. To the writer's mind this
conclusion must inevitably result in an at

least partial reversal of the entire axiomatic
trend of the late 19th and early 20th centuries,

with a return to meaning and truth as being
the essence of mathematics.

Emil Post,
invited address to the American Mathematical Society 1944

What is a proof? A proof is something that convinces us of something.
The kind of proof that Turing tried to capture is a static, finite one; a proof
that could be written down. In old-fashioned proofs, the proof is first
given then we verify it. Interactive proofs are different. An interactive
proof is never given; it comes about during a conversation between us
and a prover. The prover claims to be able to prove something, and we
interrogate the prover to validate that claim. Like the change in philosophy
between the first four chapters and chapter five-when we were forced to
consider dynamic structures-proofs can now be dynamic. For simplicity,
classical theory ignores time, but we no longer can.
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In interactive proofs both the prover and the verifier can use random
numbers, and proof is by overwhelming circumstantial evidence. As veri-
fiers we aren't really testing the prover, we're testing the prover's consis-
tency, If the prover is always consistent then the most reasonable hypoth-
esis is that the prover really knows the fact we want to establish. This
is close to the way we do science, where the prover is the universe.1 1

Further, it is close to the way we do real proofs and write real programs,
despite the formalist's view that a proof or algorithm, once found, is some-
thing fixed, finite, comprehensible, and obvious. In fact, as we've seen
throughout this book, proving a theorem or solving a problem is more
usually like making a horseshoe; first we bang on the molten metal, let
it cool into a fixed shape, then if it's not right we reheat it and bang
some more.

In real life, provers can convince, and often have convinced, others of
a result partly because of the prover's reputation at being good at proofs!
Further, there are theorems that are so long that no one can understand
all the details at once. For example, the finite simple groups classification
theorem stretches across more than thirty years, depends on the work of
more than one hundred mathematicians, and sprawls over more than ten
thousand pages in various journals. In what sense is this theorem "proven?"
For most people, mathematicians included, accepting this theorem is an
act of faith.

Further, as we discovered in chapter six (page 390), in interactive
proofs the prover doesn't necessarily have to tell us anything about the
proof itself. Such zero-knowledge proofs are proofs that a proof probably
exists! In 1988, Manuel Blum, Paul Feldman, and Silvio Micali showed that
there is no connection between interactive proofs and zero-knowledge
proofs! A zero-knowledge proof can be published once the prover and
verifier share a common random string. Since an interactive proof does
not have to be zero-knowledge, this shows that zero-knowledge and inter-
action are independent ideas. Zero-knowledge proofs show that there is
an enormous distinction between "knowing how" and "knowing that."

Finally, are interactive and zero-knowledge proofs finite? Well, currently
they are, because we choose a threshold before the proof begins and we
accept the proof once the prover's answers have increased our confidence
above that threshold. But, just as we relaxed algorithms in the previous
section, we can relax the new proofs so that there is a chance that we are
not convinced for any finite number of rounds. These proofs are "finite" in
the sense that over many trials of proving things we will be satisfied within

"1tThe Nobel laureate American physicist Richard Feynman ("fine-man") pictured the scien-
tist's task as intermittently watching an infinitely large and infinitely long chess game and
trying to figure out the rules.
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a certain number of rounds. Is this a proof? Certainly Hilbert, and perhaps
several contemporary logicians, would reject it; but in computer science
we've learned to be more flexible. We've already seen that Hilbert's orig-
inal program is flawed; Godel showed that any sufficiently strong formal
system is incomplete. Besides, ultimately we want to solve problems and
we use whatever works.

Now we've turned Hilbert-style proofs completely on their head. First,
proofs are no longer necessarily finite. Second, proofs are no longer nec-
essarily a fixed thing, but a process. Third, proofs are no longer necessarily
built on formal systems; since we may never see a "proof' (in the tradi-
tional sense) we may have no idea what system, if any, the prover used or
is using. Finally, zero-knowledge proofs strike at the heart of our intuitive
understanding of the word "proof;" we don't just want to be convinced,
we want to understand. Although the conviction that something is true can
be used to deduce aspects of a new problem, it is only understanding that
gives us insights that we can take to other problems, and so solve them
better or faster. Without some short description of what's important in a
problem, we feel cheated even if given its solution, since we cannot use
the experience to help us solve new problems. Like an enormous rubber
ball, formalist mathematics picked up speed in the eighteen nineties, hit
a brick wall in the thirties and forties and, now in the nineteen nineties,
after forty years to absorb the impact and suitably deform, is headed back
the way it came.

Speculations

The first wave of work on computability made the notion of a proof rigor-
ous; something can be proved if it can be decided by a classical algorithm
in a formal system. Now we're changing the notion of provability by relax-
ing the class of algorithms and relaxing the requirements of formal systems.
Our new view is that something can be proved if there is a feasible relaxed
algorithm that decides it, where decides is meant in the statistical sense of
adding strong confirmation to it. So this is both an extension and a con-
traction: an extension of the idea of algorithm, and a contraction from
computable to feasible, where feasible is now random polynomial time
rather than polynomial time. This new attitude can apply to proof theory
in three ways:

"* by changing the notion of algorithm it changes the notion of solvabil-
ity, which is a cornerstone of proofs in formal systems;

"* by splitting the notion of proving into generation and verification, it
is shifting the emphasis away from formal systems to the verification
act; and,



450 7 INFEASIBILITY

by shifting the emphasis from computable to feasible, it suggests that
we try to determine what theorems can be "feasibly proved."

This is a natural progression; the only surprise, perhaps, is that it took
a hundred years to reach this stage. The Church-Turing hypothesis came
about in an attempt to answer Hilbert's questions about solvability. Once
everyone agreed on a suitable notion of solvability, it was possible to show
that some of Hilbert's questions were computationally unsolvable. The
Church-Turing hypothesis represents an upper bound on computability. But
not everything computable is necessarily feasible. Now our task is to refine
our ideas about computability to better model feasible computation.

Every theorem has an infinite number of proofs in a formal system; let's
now focus on the shortest proof. We can always find a shorter proof of
any theorem in a formal system by building a new formal system with a
larger alphabet, or by taking the theorem as an axiom. So let's fix some
particular formal system. Can we use the new insights about proofs to
bound the length of any proof of a theorem in the formal system? For
example, perhaps we can prove that any proof of P = A'P is too long for
feasible proof in any reasonable formal system. (Perhaps 'P = ArP, but
the shortest proof is beyond our reach! The universe can be quite snide
at times. ) If so, and if the lower bound is very large, we should forget
about trying to prove P = APP.

Of course it still may be important to try to prove that P = APP) because
one-way functions, useful in cryptology, exist only if 'P : AP. But for
impossibly long proofs, perhaps the length of the proof makes it a good
approximation to a one-way function. Perhaps there's a relation between
the length of such a result and the cost of the algorithms found. That is,
even if 'P = A"P, it could be that the proof is so long that most resulting
algorithms, although polynomial, are impractical. And therefore functions
that approximate one-way functions would exist.

From G6del's work we know that for any formal system strong enough
to contain arithmetic, we cannot have upper bounds on the length of a
proof of every theorem, because then membership in that formal system is
solvable. On the other hand, we cannot prove a non-trivial lower bound
on the length of the proof of a theorem in every formal system, because
we can always make the theorem an axiom in a new formal system. So
the question is: Given a theorem T and a formal system F, can we prove
a lower bound on the length of the shortest proof of T in F? Further,
if we could prove that the shortest proof of T in F is impossibly long,
would we be justified in accepting T? Finally, could such results, if any!,
be extended to bound the length of programs?

We can now, perhaps, define some adjectives that theorists commonly
use but never define. All of the following definitions are relative to a fixed
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formal system: A theorem with many short proofs is trivial. A theorem with

one short proof is deep. A proof is elegant when it is short and all other
proofs of the theorem are much longer. A proof is tedious or straightfor-

ward when it is long but all auxiliary theorems needed in the proof are
trivial. A proof is ugly or uninspired when it is just as long as its informa-
tion content. We say that a brute force case analysis "is not enlightening"
because we want to find patterns that shorten our descriptive and predic-
tive task. It does not help us if those "patterns" are as long as the thing
described!

On page 442 we saw how far complexity theory has classified problems;
can we do the same thing for theorems? So far proof theory refines which
proof systems are complete, sound, or consistent, without saying which
theorems within a proof system are easy or hard. Formalism has carried
us far, but there is as yet no formal definition of "infeasible theorem" anal-
ogous to "infeasible problem." Perhaps questions like whether P = /KP or
whether Fermat's last theorem is true, aren't independent or unsolvable,
as some presently believe, they're just infeasible. Can we refine provable
into feasible and infeasible, as in complexity theory? Computability was the
key used to make provability rigorous. Now we need formal definitions of
easy and hard provability.

What is knowledge? Philosophers have been struggling with this question
for millenia; but our complexity theory may shed new light on the prob-
lem. Suppose I want to identify a positive integer and I have three pieces
of information. The first says that the number is even, the second says that
the number is greater than one million, and the third says that the number
is less than two million. Putting them all together narrows the search con-
siderably, but if I had to choose only one of the three, I'd prefer to know
the third (the upper bound). The upper bound gives more information
than the other two.

Now suppose the third piece of information was that the number is a
counterexample to a notoriously difficult conjecture like Fermat's last the-
orem. This piece of information is almost useless. It has hidden any infor-
mation in an almost inaccessible place. Now consider the same problem
again, with the same three pieces of information, but with the third "hid-
den" in the above way. Does the third still give more information than the
other two?

Currently, interactive proofs and zero-knowledge proofs assume an
infinitely powerful prover. But if we want applicable results then we must
bound the prover's power. Now suppose a bounded prover says that she
can prove a result with zero-knowledge. If we can prove that the shortest
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proof of the result she is claiming to be able to prove is too long for her
to have proven then we have the option of disbelieving her even if she
may have otherwise convinced us! (Perhaps we should have proofs of
the prover's power?) Further, suppose there are two zero-knowledge
provers, the first more powerful than the second. Suppose the first proves
to the second that a result is true. If this result is within the first prover's
power, but not the second's, then the second prover cannot prove this
result to us!

So far, proof theory in logic has had little impact on proofs in science;
formal systems are about deductions from a theory, but science is also
about inductions to a theory. Faced with a number of phenomena, the
scientist constructs a theory to explain and predict these phenomena; we
might think of this as constructing a verifiable algorithm to generate predic-
tions. This algorithm is useless if it is as long as the number of phenom-
ena, or if it takes too long to compute a prediction. The joy we feel over
short but comprehensive theories like general relativity or quantum chro-
modynamics is due to the surprise we feel over their enormous explana-
tory power; they are short statements explaining a large number of appar-
ently unrelated phenomena. A brief explanation can be easily and quickly
remembered, communicated, and extended. Given an apparently arbitrary
collection of phenomena, how can we tell if they have a brief explanation?

We now have theories of complexity, probability, information, and the
beginnings of a theory of algorithmic information, but what we want, and
have always wanted, is a theory of knowledge. How do we know what
we know, and how can we find out more? We need a computational epis-
temology. The ingredients appear to be: probability, randomness, con-
viction, probabilistic verification, bounded computation, probabilistic com-
putation, protocols, cryptology, interaction, information, and inaccessible
information. Going into the new century we are in the same position as
Hilbert was at the turn of this century, but we're no longer confused about
proofs or algorithms, we're confused about knowledge.

7.9 Coda-The End of the Beginning
This is not the end. It is not even the

beginning of the end. But it is, perhaps,
the end of the beginning.

Winston Churchill,

Speech on the fall of Egypt, 10 November, 1942

Taking a generation as thirty years, we have had civilization for less than
two thousand generations; and of those, the last three have seen the largest
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increase in power of them all. The only thing we can be sure of is that
there will be change, and change at an ever increasing rate. This gen-
eration may well be the last before the term "generation" ceases to have
meaning as the base measure of change. Our society is undergoing enor-
mous technological changes and the computer is at the center of them all;
if not as a direct cause then as an irreplaceable helper. Analysis has been
somewhat parochial in the past, if only because the simplest problems
weren't understood for many years. Now that some of the basic features
of the field have emerged, it's time to apply this new-found knowledge to
wider domains.

Today computers are everywhere, and they are moving deeper into the
infrastructure and further from sight all the time. The analysis chores are
therefore many. Diversification has already gone so far that a list of appli-
cations would merely be a list of every thing and every process in our soci-
ety. But some major current thrusts are toward massively parallel compu-
tation, distributed computation, computational experimental physics, and
computational number theory. And, of course, technological change con-
tinues apace in materials science, biotechnology, computer technology,
optoelectronics, and space exploration and development. People in solid
state physics, agriculture, molecular biology, engineering, materials sci-
ence, business, architecture, and law desperately need your expertise and
your creative solutions to their problems.

What is theory for? The computer scientist is an uneasy alliance of the-
orist and engineer. Theory forces classification, and classification makes
identification and prediction easier. A theory is the condensate of experi-
ence; a condensed statement of what is common to many seemingly dif-
ferent things. The best theoretical work suggests practical analogues that
aren't as exact as the theory specified, but which work well in practice.
Often these pathbreaking applications are hard to find without theory guid-
ing our steps. Theory is also good preventive medicine; some things can't
be done, either easily or at all. The tree of theory grows by budding new
twigs of conjecture at the cutting edge of the subject. If these conjec-
tures are fruitful, the tiny twig grows into a main branch of the tree, with
many new twigs of its own. To take but one example, the revolution in
our understanding of proofs and algorithms will have ramifications all over
computer science. And perhaps even in science in general. And that's
what theory is for.

As Hilbert's epitaph says:

Wir mitssen wissen.
Wir werden wissen.

[We must know. We shall know.]
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And what of analysis? Well, some trends are fairly clear, as analysts we
should: look for solutions that are "good enough" (forget about exact
answers all the time); look at sequences of instances rather than a sin-
gle instance; look for adaptive solutions (allow the machine to mis-solve
problem instances initially); allow randomness; and exploit parallelism
more fully.

In chapter one we thought that .P-complete problems formed a huge
mountain chain deep in the interior of the continent of analysis. Now
we know that they're just a hillock somewhere near the beach; we really
haven't travelled very far at all. It's a large and complex universe and there
is much to explore. This book described the beginning of a neverending
story; there are frontiers everywhere-and there always will be. Do your
share to make those frontiers grow.

A new breed of explorers are now trekking through the continent of
analysis, bringing with them new tools and new techniques. To progress
they have jettisoned some of the old ways and the old ideas. They keep
secrets; they prove things without giving proofs; and they use randomness
profusely. Having discovered a mountain in the way of progress they've
lightened their conceptual burdens; they've dropped some of the classical
ideas about algorithms to get fast solutions. These brave souls are pre-
pared to have their algorithms sometimes fail, sometimes lie, and some-
times never return! It's an exciting time.

Welcome to the beginning.

Endnotes

Definitions
"* axiom: An axiom is a statement whose truth is assumed.

"* inference rule: An inference rule is a rule used to deduce new state-
ments from a collection of statements.

- formal system: A formal system is a finite set of axioms and a finite

set of inference rules.

"* theorem: A theorem is a deduced statement of a formal system.

"* proof- A proof of a theorem in a formal system is a (possibly empty)
sequence of theorems deduced using only the inference rules starting
only with the axioms and ending with the theorem.

"* consistency: A formal system is consistent if it is not possible to prove
two contradictory theorems within the system.
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" completeness: A formal system is complete if all true theorems
expressible in the formal system are provable in the system.

" independence: A statement is independent of a formal system if the
system's consistency is not changed by assuming the statement either
true or false.

" continuum hypothesis: The continuum hypothesis postulates that the
number of real numbers is the next infinity after the number of inte-
gers.

" axiom of choice: The axiom of choice postulates that it is possible to
choose one element from each of an infinite set of infinite sets.

"* computationally unsolvable problem.: A problem is computationally
unsolvable if no algorithm solving it can exist.

"* linear program: A linear program is a collection of constraints in n
variables, each of which is linear in each of the variables, together
with a linear function to be maximized. Solving linear programs is
called linear programming.

"* Church-Turing hypothesis: The Church-Turing hypothesis postulates
that every algorithm can be described by a turing machine.

"* polynomial transformability: One problem is polynomially trans-
formable to another if we can transform any instance of the first into
some instance of the second in polynomial time.

"* polynomial equivalence: Two problems are polynomially equivalent
if each can be polynomially transformed into the other.

"* computational hardness.' A problem is computationally hard if it does
not have a polynomial time solution.

"* alphabet: An alphabet is a finite non-empty set of symbols.

"* string: A string is a finite sequence of symbols of some alphabet.

"* language: A language is a set of strings over some alphabet.

"* complement of a language: The complement of a language is the set
of strings, over some alphabet, that aren't in the language.

"* class.: A class is a set of languages over some alphabet.

"* complement of a class: The complement of a class is the set of lan-
guages, over some alphabet, that aren't in the class.

"* closed set: A set is closed under relation R if A is in the set and ARB
implies that B is in the set.
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"* complexity class.; A complexity class is a class of languages each of
which can be accepted by a turing machine using a particular amount
of resources.

" hardness with respect to a class: A language is C-hard if it is at least
as hard to accept as every language in the class C.

" completeness with respect to a class: A language is C-complete if it is
C-hard and it is in the class C.

"* Cook-Levin theorem: The Cook-Levin theorem states that the satisfia-
bility problem is at least as hard as every other problem in Agp.

Notes
Russell's quote on page 417 appeared in "Recent Work on the Principles of
Mathematics," Bertrand Russell, International Monthly, 4, 84, 1901. Cantor
in his 1891 paper was not the first to use diagonalization; six years earlier
Paul du Bois-Reymond used it to construct a function growing faster than
any function in any countably infinite set of functions. But the nefarious
use made of this construction is Cantor's.

The demonstration that simplex is exponential in the worst case can be
found in "How Good is the Simplex Algorithm?," Victor Klee and G. J.
Minty in Inequalities-III, 0. Shisha (editor), Academic Press, 1972. Inci-
dentally, Karmarkar's early proof that his algorithm was superior had the
flavor of a zero-knowledge proof. Because of its enormous economic
potential, AT&T wanted to keep the algorithm secret, but it wanted other
companies to think it useful enough to pay for it. The strategy they decided
on was to allow other companies to benchmark the object code form of
the algorithm and keep the source code secret.

The example of the satisfiability problem in terms of letters is from the
excellent article "Combinatorics, Complexity, and Randomness," Richard
M. Karp, in ACM Turing Award Lectures: The First Twenty Years, 1966-
1985, ACM Press, 1987.

Three basic references for the subsection on interactive proofs are: "The
knowledge complexity of interactive proof-systems," Shafi Goldwasser,
Silvio Micali, and Charles Rackoff, SIAM Journal on Computing 18, 186-
208, 1989. "The polynomial time hierarchy has interactive proofs," Carsten
Lund, Lance Fortnow, Howard Karloff, and Noam Nisan, electronic mail
announcement, December 1989, to appear, 1991. "ITV = Pspace," Adi
Shamir, Proceedings of the 3 1st Annual Symposium on the Foundations of
Computer Science, IEEE Computer Society, 11-15, 1990.

The paper showing that there is no connection between interactive
proofs and zero-knowledge proofs is "Non-Interactive Zero-Knowledge
and Its Applications," Manuel Blum, Paul Feldman, and Silvio Micali, Pro-
ceedings of the 20th Annual ACM Symposium on the Theory of Computing,
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103-112, 1988. The paper establishing the two-prover interactive proof
result is "Multi-prover interactive proofs: How to remove the intractabil-
ity assumptions," Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi
Wigderson, Proceedings of the 201h Annual ACM Symposium on the Theory
of Computing 113-131, 1988.

Exercise 1, page 459, contains an extension of a game called the X of
X game, which I first heard from Kellogg Booth. In the game, players
take turns challenging the others to guess X when told, for example, that
the X of X is "David and Solomon" (this is a hard one; hint: think of the
Bible). Part of the exercise was also prompted by a question in Intro-
duction to Computation Theory, Daniel I. A. Cohen, John Wiley & Sons,
revised edition, 1990.

Further Reading
One of the seminal papers in computability theory (and by extension,
complexity theory) is "On Computable Numbers with an Application to the
Entscheidungsproblem," Alan M. Turing, Proceedings of the London Math-
ematical Society, series 2, 42, 230-265, 1936/37. A correction appeared in
the same journal: 43, 544-546, 1937. This paper is well worth reading even
today. For an excellent collection in English of the original papers on com-
putability see The Undecidable: Basic Papers On Undecidable Propositions,
Unsolvable Problems, And Computable Functions, Martin Davis (editor),
Raven Press, 1965. For a more recent collection see Philosophy of Mathe-
matics, Paul Benacerraf and Hilary Putnam (editors), Cambridge University
Press, second edition, 1983.

For an excellent introduction to logic and its relation to computability see
A Profile of Mathematical Logic, Howard Delong, Addison-Wesley, 1970.
For a well-written advanced introduction to set theory see Naive Set Theory,
Paul Halmos, Springer-Verlag, 1960. See also the first half of the delightful
book Set Theory and Metric Spaces, Irving Kaplansky, Chelsea Publishing
Company, second edition, 1977. To appreciate the depth of the axiom
of choice and the paradoxes it leads to see The Banach-Tarski Paradox,
Stan Wagon, Cambridge University Press, 1985. Recent work on construc-
tivist mathematics before Bishop died is presented in Constructive Analysis,
Errett Bishop and Douglas Bridges, Springer Verlag, 1985.

For an excellent introduction to computability theory see Computability:
Computable Functions, Logic, and the Foundations of Mathematics, Richard
L. Epstein and Walter A. Carnielli, Wadsworth & Brooks/Cole, 1989. For
an elementary presentation of G6del's theorem see Godel's Theorem Sim-
plified, Harry J. Gensler, University Press of America, 1984.

For an introduction to computation theory (the study of computational
machines-as distinct from computability, the study of models of computa-
tion) see Introduction to Automata Theory, Languages, and Computation,
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John E. Hopcroft and Jeffrey D. Ullman, Addison-Wesley, 1979; or Theory

of Computation, Derick Wood, Harper & Row, 1987.
The standard reference for infeasibility is the excellent Computers and

Intractability: A Guide to the Theory of ArP-Completeness, Michael R. Garey
and David S. Johnson, W. H. Freeman, 1979. Johnson continues to update
the field in his periodic "The APP-Completeness Column: An Ongoing
Guide," in The Journal of Algorithms.

There is one large book solely on the travelling salesman problem. See
The Traveling Salesman Problem: A Guided Tour of Combinatorial Opti-

mization, Eugene L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D.
Shmoys, John Wiley & Sons, 1985. For more on optimization see Discrete
Optimization, R. Gary Parker and Ronald L. Rardin, Academic Press, 1988.
For a well-written introduction needing only rudimentary background see
Linear Programming, Vagek Chvdtal, W. H. Freeman, 1983.

The two seminal papers on A!P-complete problems are "The complex-
ity of theorem proving procedures," S. A. Cook, Proceedings of the 3 rd

Annual ACM Symposium on the Theory of Computing, 151-158, 1971;
and "Universal'nyle perebornyle zadachi," (Universal search problems),
in Russian, Leonid Levin, Problemy Peredaei Informatsif, 115-116, 1973.
(English translation in Problems of Information Transmission, 9, 265-
266, 1973.)

For further information on the finite simple groups classification theo-
rem see "The Enormous Theorem," Daniel Gorenstein, Scientific American,
104-115, December 1985.

For more on structural complexity theory see the well-done Structural
Complexity I, Jose Balcdzar, Josep Diaz, and Joaquim Gabarr6, Springer-
Verlag, 1988. The authors continue with more advanced material, includ-
ing brief introductions to interactive proofs and algorithmic information the-
ory, in Structural Complexity II, Springer-Verlag, 1990.

For more on interactive proof systems see Computational Models of
Games, Anne Condon, MIT Press, 1990. For more on zero-knowledge
proofs see Uses of Randomness in Algorithms and Protocols, Joe Kilian,
MIT Press, 1990. For an amusing and incisive overview with great stories
and new results see "Email and the unexpected power of interaction,"
Ldiszl6 Babai, Proceedings of the 5th Annual ACM Structure in Complexity
Theory Conference, 30-44, 1990.

Besides the turing machine, Turing is important for other contributions
to mathematics, computers, computer science, and biochemistry. He
invented the Turing test in artificial intelligence; he designed and built one
of the first digital computers; he worked on biological development; and
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he worked on cryptography too! Alan Turing was a stunningly original
mind.

Science is about people. It's sad that otherwise educated people know
Voltaire, Beethoven, and Picasso, but not Gauss, Euler, Cantor, Hilbert,
Turing, or G6del. A few know the classical scientists Galileo, Mendel,
Darwin, Newton, Maxwell, and Mendeleev, but don't know the classical
mathematicians Leibniz, Fermat, Abel, Fourier, Cauchy, Lagrange, Galois,
Riemann, and Poisson. Even those who know recent scientists like Bohr,
Watson, Crick, Einstein, Feynman, Hawking, Bell, Josephson, and Pri-
gogine don't know recent mathematicians like Poincare, Ramanujan, von
Neumann, Dantzig, Kolmogorov, Erd6s, P61ya, Cohen, Gorenstein, Fried-
man, Shannon, and Faltings, or recent computer scientists like Cook, Levin,
Karp, Blum, Rabin, Hartmanis, Markov, Yao, Knuth, Razborov, Lovdsz,
Minsky, and McCarthy, to name but a few. These, and others like them,
are the people who have given us our civilization; they are at least as
important as writers, musicians, and painters. Do your part to see that
they are not forgotten.

A hagiography would be out of place here, so I will merely urge you
to read about those few who have already been written about: Gauss: A
Biographical Study, W. K. Buhler, Springer-Verlag, 1981. Georg Cantor.
His Mathematics and Philosophy of the Infinite, Joseph Warren Dauben,
Harvard University Press, 1979. Hilbert, Constance Reid, Springer-Verlag,
1970. Reflections on Kurt Godel, Hao Wang, MIT Press, 1987. Alan Turing.
The Enigma of Intelligence, Andrew Hodges, Unwin, 1983.

Questions
We cannot call that hope which may be

resisted and overthrown by adversity, for as
light shines most in darkness, even so hope

must remain unshaken in the midst of toil.

Miguel de Cervantes Saavedra,
Persiles and Sigismunda

FExercises

1. "Short" is indeed short, "polysyllabic" is also polysyllabic. Call words
that describe themselves homologous and words that don't describe
themselves heterologous.

(a) Classify "neologistic," "rarefactional," "intempestive,"
and "dasypygal."
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(b) Is "heterologous" heterologous or homologous?

(c) Find ten homologous words.
(d) Find ten heterologous words.

(e) Find five words that fit the schema: the X of X is X. (Trivial
answers like the misspelled word "mispelling" are disallowed.)

2. Let P be a problem.

(a) If P isn't in A/P, is P not in P?

(b) If P isn't in P, is P not in AMP?

3. Suppose P1 and P2 are problems and P1 is polynomially trans-
formable to P2.

(a) If P1 is in P, is P 2 in P?
(b) If P2 is in P, is P1 in 7'?

(c) If P1 is A/P-complete, is P2 A/P-complete?
(d) If P2 is A/P-complete, is P, A/P-complete?

(e) If P2 is polynomially transformable to P1 , are P1 and P2 AKP-
complete?

(f) If P1 and P2 are ANP-complete, is P2 polynomially transformable
to PI?

(g) If P1 is in ArP, is P2 A/P-complete?

4. Show that polynomial transformability is a partial order over A/P, and
that polynomial equivalence is an equivalence relation over ArP.

5. Show that P C coAfP n AfP.

6. The symmetric difference of two sets is the set of elements in the
union of the sets that is not in the intersection. Call two sets equal
almost everywhere if their symmetric difference is finite. Show that
equal almost everywhere is an equivalence relation on all sets over a
fixed alphabet.

7. Show that P and A/rP are closed under almost everywhere equality.

8. Suppose there are an infinite number of A/P-complete problems. Can
there be a problem in A/P that needs more than a polynomial number
of polynomial transforms before we arrive at an instance of satisfia-
bility?

9. Assume the Church-Turing thesis. Consider a physical digital com-
puter M that solves an instance of a problem P, then builds a phys-
ically smaller copy of itself. Index the sequence of machines built as
MO, M 1 , M 2 , . . . , where the first machine is M0 .
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(a) Can Mo ever stop for any instance of the problem P if P is a
computationally unsolvable problem?

(b) Suppose one of these machines solves some problem P, but it
can't build a smaller copy of itself because of physical limits. Is
this machine the smallest possible machine that solves P?

(c) Suppose the problem P is for the machine to build a smaller
copy of itself; so all that each machine is doing is building a
smaller copy of itself. Is the smallest machine produced the
smallest possible machine that solves P?

10. Call a language polynomial if there is a during machine that accepts it
in polynomial time. Show that

(a) Every finite language is polynomial.

(b) The complement of a polynomial language is polynomial.

(c) The union of two polynomial languages is polynomial.

(d) The intersection of two polynomial languages is polynomial.

11. Show that the set of all subsets of a countably infinite set is
uncountable.

12. David Hilbert has a hotel with a countable infinity of rooms. Suppose
the hotel is full.

(a) Show that if one new guest shows up then Hilbert can find an
empty room.

(b) If a countable infinity of new guests show up can Hilbert find
room for them all?

(c) Prove that if an uncountable number of new guests show up then
Hilbert cannot find room for them all.

[Problemsý

1. Hilbert's Hotel II: The Return of the Guests.
Show that if a countable infinity of sets each of a countable infinity of
guests show up then Hilbert can find room for them all even though
his hotel is already full.

2. What is wrong with the following argument?
Let's enumerate all real numbers between zero and one to show that
there are only a countable infinity of them.
There are a finite number of one-digit reals between zero and one:

0.0 0.1 0.2 . . .0.7 0.8 0.9
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There are a finite number of two-digit reals between zero and one:

0.00 0.01 0.02 ... 0.97 0.98 0.99

In general, for every n there are a finite number of n-digit reals
between zero and one. From the previous question we know that
a set made of a countable infinity of sets, each of which is at most
countably infinite, is countably infinite. So there are a countable infin-
ity of real numbers between zero and one.

3. Call a function that assumes a value for each element of its domain
a total function. Given a countably infinite set of total functions,
construct a total function that grows faster than every function in
the set. That is, find a function f such that if g is in the set then
lim f(n)/g(n) is not bounded.

n-- oC

4. An independent set of a graph is a subset of its nodes no two of
which are connected. Show that deciding whether a graph has an
independent set of at least k nodes is AKP-complete.
You may assume that the following problem is AgP-complete: decid-
ing whether a graph has a subset of at least k nodes where every
two nodes in the subset are connected in the graph. Such a subset
is called a clique.

5. A dominating set of a graph is a subset of its nodes where every
node of the graph is either in the subset or is a neighbor of at least
one node in the subset. Show that deciding whether a graph has a
dominating set of at most k nodes is KP-complete.
You may assume that the following problem is AKP-complete: decid-
ing whether a graph has a subset of at most k nodes where for every
edge of the graph at least one of its nodes is in the subset. Such a
subset is called a node cover
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SResearchI

1. Is deciding whether two graphs are isomorphic KVP-complete?

2. As we have seen, the classical notion of an algorithm is only one
extreme of an entire continuum of hypothesis testers. In scientific
tests of hypotheses some experiments give more confirmation to a
hypothesis than others but confirmation theory is still in its infancy.
Clarify the intuitive idea of an algorithm and classify all possible algo-
rithms.

3. Are there useful theorems and sets of formal systems such that there
is an easy proof of the theorem in one formal system, but no easy
proof of its negation in any other formal system within the set of
formal systems chosen? That is, are some theorems so hard that we
can't find a proof of the theorem or its negation in any reasonable
time? By this measure, theorems independent of the formal system
would be the hardest, since they can be neither proved nor disproved
in the system.

4. Prove that it doesn't matter whether P = K'P.

o~p





A poem should begin in delight and end
in wisdom.

Robert Frost

Besides this, unexampled wonders have
been seen here performed by God, the

sea has been opened, a cloud has shown
you the road, the rock has given forth

water, manna has rained, and everything
has contributed to your greatness, the

remainder must be done by you.

Niccol6 Machiavelli, The Prince

It is not incumbent on you to
complete the work, but neither

art thou free to desist altogether.

Rabbi Tarfon, Tractate of the Fathers, 2:21, The Mishna

The past is but the beginning of a
beginning, and all that is and has been is

but the twilight of the dawn.

H. G. Wells, Essays: The Discovery of the Future

The Road goes ever on and on
Down from the door where it began.

Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,

Until it joins some larger way
Where many paths and errands meet.

And whither then? I cannot say.

J. R. R. Tolkien, The Lord of the Rings



APPENDIX A

MATHEMATICAL
BACKGROUND

A. 1 Basics

Statements

In the following, P and Q are statements.

3x, P(x) there is an x for which P is true
Vx, P(x) for all x for which P is true
P(x) =#- Q(y) if P(x) is true then Q(y) is true
P(x) ==>- Q(y) if P(x) is true then Q(y) is true, and vice versa

The important thing to remember is that the implication P(x) =•= Q(y)
does not say anything about the truth of P or Q; it says something about
the relation between the truth values of P and Q. If P(x) === Q(y) is
true it says that if P happens to be true for x then Q must be true for
y. Alternately, it says that if Q happens to be false for y then P must be
false for x. The second form is equivalent to the first, and is called the
implication's contrapositive.

Sets

In the following, A and B are sets and { x : P (x) } means the set of things
for which P is true.

a E A a is an element of A
A C B A is a subset of B 4 Vx, xEA=:=xcB
AuB the union of AandB ={x xEAorxEB}
AnB the intersection of A and B ={x xeAand xeB}
A\B the set difference ofA andB ={x xCA andxIB}
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Induction

It's important to try to prove things because patterns for small n can mis-
lead us. For example, n2 + n + 41 is prime for n = 0, 1, 2, . . ,39. Perhaps
n 2 + n + 41 is prime for all n? No, it's composite for n = 40.

Or consider the factors of xn - 1:

x 1 -1 = (x - 1)

X2 -1 = (x -1)(x + 1)

x 3 1 (x-1)(x2 + x+1)

x 4  1 (x -1)(x + 1)(x 2 + 1)
x-1 1 (x-1)(x4 +x 3 +x 2 +xX+1)

x 6 -1 = (x-1)(x+1)(x 2 +x+1)(x 2 -x+1)

Perhaps xn - 1 always factors into terms involving coefficients no larger
than 1? No, this is true for n up to 104, but x 10 5 - 1 contains a factor with
a term of 2x 41 and a term of 2x 7 .

On the other hand it is true that x - 1 always divides xn - 1.
One way of gaining the surety that a proof gives is called induction.

Induction is like any other proof method except that it is restricted to
statements about the integers and when proving such a statement we are
allowed to assume the truth of all statements for smaller integers.

For example, suppose we want to show that 9 always divides 25" +
3n - 1.

Basis step: when n = 1, 25n + 3n - 1 = 27, so our hypothesis is true
when n = 1.

Inductive step: Suppose that 9 divides 2 5k + 3k - 1 for all k < n.
We now want to show that 9 then divides 25n + 3n - 1 and, if we need

to, we're allowed to assume that 9 divides 2 5 k + 3k - 1 for every k smaller
than n.

Well,

25n + 3n - 1 = 25x25 n-1 +3(n-1)+3-1

= 25x25 n-1+25x3(n-1)-24x3(n-1) +2

= 25(25n- 1+3(n-1)-1)-24x3(n- 1)+27

= 25(25n-1 + 3(n - 1) - 1) - 9(8(n - 1) - 3)

But n > n - 1, so 9 divides the first term. Thus 9 divides both, hence 9
must divide 25n + 3n - 1.

Therefore, if 9 divides 2 5k + 3k - 1 for all k < n, then 9 also divides
25n + 3n - 1. And since 9 divides 251 + 3 - 1, then 9 always divides
25n + 3n - 1.
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Functions

An integer function f maps elements of a set of integers D with elements
of a set of integers R, with the restriction that no element of D can map
to more than one element of R. D is the domain of the function, and R
is its range.

"* one-to-one: f is one-to-one if f(n) = f(m) implies that n = m.

"* onto: f is onto if Vn E R, 3m e D such that f(m) = n.

"* bijection: f is bijective if it is one-to-one and onto.

"* non-decreasing: f is non-decreasing if n > m implies that f(n) >
f(m).

"* increasing: f is increasing if n > m implies that f(n) > f (m).

"* real-valued: f is real-valued if f(n) may be a real number; that is,
f(n) is not restricted to being an integer.

Integer Functions

"* The floor function: 'xJ = the greatest integer less than or equal to x.

"* The ceiling function: [xl = the smallest integer greater than or equal
to x.

"* The nearest integer function: (x) = the nearest integer to x. (This is
not really a function unless we decide to always round up or down.)

Powers and Logarithms

x0 = 1

X-a 1/xa

xa+b xa xxb

xab = (Xa)b

If x > 1 then the logarithm to the base x of y, written logx y, is the power
to which we must raise x to get y. Therefore,

xZz=y €===Y z = log& y

Ig y is the log base two of y; In x is the log base e of y.
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It follows that
Zlogx y = ylogx z

Using the relations
y = zlogz Y = XIOg Y and x = zlogý x

we can show that
log, Y

logx Y -log, x

With this relation we can change to any base, for example

In xlgx- 1n2

Factorials

n factorial, n!, counts the number of ways we can arrange n distinct
things.

n!= n n=0
n!{lx2x...x(n-1)xn n>O

We have n choices for the first thing, n - 1 for the second, n - 2 for the
third, and so on. Each arrangement is a permutation.

n choose k, (n), counts the number of ways we can choose k things
from n distinct things.

[0 k>n

k k!(n - k)! n >k>O

The falling factorial, n !k, counts the number of ways we can choose and
then arrange k things out of n things.

n !
n!k = (n k)! = n(n - 1)(n - 2)..-(n - k + 1)

Note that
(n) n!k

k k

and that

(n) (n2-k)
It is straightforward to show Pascal's relation

(n) = (n - 1) + (n -J
(n) is also known as a binomial coefficient because it is the coefficient of
the term xky"-k in the expansion of (x + y)n.
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Stirling's Approximation

n! = v2rn ( ef (n)/12n

where 1 > f(n) > 0. Therefore,

n!= -/27rn ( n ) n(1±+o(1))

Harmonic Numbers

n1
Hn = =Inn + + -y + - 2 "

i=1

L 1 •r2

T2 T = 1.64493.-.

A.2 Algebra

The Binomial Theorem

The binomial theorem is

i=0

Two important special cases are

(x + l)n - (n)xi
i=0

and
2 n .(1 +1) = (7)

i=0

The last relation says that the number of ways we can select i people from
n people, where i ranges from 0 to n, is 2n.
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We can differentiate the binomial theorem with respect to x and substi-
tute x = 1 to obtain an important sum

n ( n) = n2 n-
i=0

Another way to see this is to count the number of ways we can select
any number of people, where one person is special (say, the chair of a
committee), from a set of n people. We could select someone to be the
chair (n ways) then fill the remaining i - I = 0, or 1, or 2, ... , or n - 1
slots ( 2 n-1 ways). So there are n2n- 1 ways to select k < n people, one
of whom is special. Alternately, we could first decide how many people
are to be selected (say i), then there are (n) ways to choose i people,
and i ways to choose one of them to be special. So there are Eni 0 i(n)
ways to do this. So the two expressions are equal.

Partial Fractions

Sometimes it is useful to be able to take a rational polynomial function
(a ratio of two polynomials) and resolve it into "proper fractions." This
process is called finding partial fractions.

For example, we would like to do the reverse of the following

1 2 x+ 1 x1++2(x-1) x+1
X-1 -- I X1 X2 +1 X2 - 1 +21

3x-1 x+1
x-1 + x 2 + 1
(x 2 + 1)(3x - 1) + (x + 1)(x 2 

- 1)

X4- 1
4x 3 + 2x - 2

x4 - 1

To do this we factorize the denominator and write an equation summing
each of the separate factors. Let r, s, t, and u be such that

4x3 + 2x - 2 r s tx+u
X 4 -1 X - 1 + X" X2+ I1

Suppose we don't know r, s, t, and u. But we know that if they satisfy
the equation then they must satisfy other conditions. Multiplying through-
out by x 4 - 1 we get that

4x 3 + 2x - 2 = r(x + 1)(x 2 + 1) + s(x - 1)(x 2 + 1) + (tx + u)(x 2 - 1)

And now substituting various values for x gives us conditions that r, s,
t, and u must satisfy (for example, substituting 1 and -1 for x give us r



A.3 Real Analysis 473

and s). From these equations we can solve for r, s, t, and u, thereby
giving us the partial fraction form of

4x 3 + 2x - 2

x4- 1

In general, we reduce the rational function to lowest terms by dividing
the denominator into the numerator as many times as it can go, factorizing
the remaining proper fraction, and expressing it as a sum of partial frac-
tions. Each partial fraction is P(x)/Q(x) where the degree of each P(x)
(the polynomial with the unknown constants) is one less than the degree
of Q(x), where Q(x) is one of the factors of the factorization. Then we
solve for each P(x).

A.3 Real Analysis

Limits

lim f(x) = s

means that f(x) can be kept as close to s as desired by keeping x suffi-
ciently close to, but not necessarily equal to, r. In symbols:

lim f(x)=s =
x-.r

Vt >03u>0: Vx r, r+u>x>r-u=>s+t > f(x)>s-t

Intuitively, the definition says that no matter how small someone requires
the difference between the function value and the limit value to be, we
can always find a point near r satisfying that condition

The limit as x tends to infinity of f(x) is s if no matter how close we
want f(x) to be to s we can always find a big enough x making it that
close. In symbols:

lim f(x) = s =
X--00

Vt>0 3u>0: x>u s+t>f(x)>s-t

One limit is so important that it has its own name:

ex = lim (1
n -- c (

X1 X2 X3 X4
= l+gaihs +T! +a-as l+sybli +...

1 X2 X3 x4

The number e = 1 +1 +1½+1{+ 4 + .... = 2.718 ... is so important that base
e logarithms have a special symbol, In.
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f is continuous at r if

lim f(x) =f(r)
X---+r

It is possible to show that

lim(-f(x)) = - lirn f(x)
x--r x-+r

lim f(x) = s = lim(f(x) - s) = 0
x-- r x--r
lim f(x) = s = lim t f(x) = ts

x-rx-- r

lir f(x) = s$40 = lim l/f (x) = 1/s
x---r x--r

lim (f(x) ± g(x)) = limf(x) ± limg(x)
x-r ~ X-'r

lmf(x) x g(x)) =(Iximrf(x)) x (limrg(x))

x-limr(f(x)/g(x)) = (limf(x)r / (lim g(x)) (if rim g(x) 1 0)

lim f(g(x)) = f(lim g(x)) (if f continuous at lim g(x))
x--r x-r x--r

Differentiation

The derivative of f at x is

f'(x) = lir f(x + r) -f(x)
r-O r

This limit, if it exists, measures the growth rate of the function near x.
The steeper the function is near x the faster it's increasing and the larger
is its derivative. The derivative must be zero when f is constant, because
f is not changing in value anywhere; and it must be constant when f is
linear, because f is changing uniformly.

f(x) = s = f'(x) =0 and f(x) = sx + t == f'(x) = s

The derivative is also denoted df/dx or d/dx of f since it's the limit of
a difference in x divided into the corresponding difference in f (taking d
for "difference").

It is possible to show that

f(x) = g(x) ± h(x) ==> f'(x) = g'(x) ± h'(x)

f(x) = g(x)h(x) = f'(x) = g(x)h'(x) + g'(x)h(x)

g(x) h(x)g'(x) - h'(x)g(x)
f(x) - h(x) ' f,(x)=h h 2(x)

f(x) = g(h(x)) ==> f'(x) = g'(y)h'(x) (where y = h(x))



A.3 Real Analysis 475

To find the derivative we differentiate the function. Let's differentiate
the two functions f (x) = x 2 and g(x) = xn (n > 2).

f'(x) g'(x)

lim f(x + r) - f(x) = lim g(x + r) - g(x)
r--O r r--O r

lira(x + r) 2 x 2  = i (X r)n - xn

r-.0 r r--0 r

lim 2rx + r 2  lirn nrxn-1 + r 2(some terms)
r--.0 r r--0 r

= lim(2x + r) = lim(nx`' + r(some terms))

= 2x = xn-1

The Chain Rule

The chain rule: if f = g(y) and y = h(x) then

f'(x) = g'(y)h'(x) = dg dy
dy dx

where g'(y) is the derivative of g with respect to y.
Suppose we want to differentiate f(x) = (x 3 - x) 2 . Let y(x) = x 3 

-x,

so f(y) = y 2 (and so, f(x) = x 6 - 2x 4 + x 2 ). By the chain rule

f'(x) = f'(y)y'(x)

= 2y(3x 2 
- 1)

= 2(x 3 - x)(3x 2 - 1)

= 6x 5 - 8x 3 + 2x

The same result follows by direct differentiation of f with respect to x.
We can use the chain rule to show that

2x + I 27g

f(x) = e x 2 +x = f'(x) = 2-x2xev.+x

Using the chain rule, the derivative of xS where s is a positive or nega-
tive real number is sxs- 1 . Also using the chain rule, the derivative of eg(x)
where g is any differentiable function is g'(x)eg(x). (In particular, the
derivative of ex is ex; this is what makes it so special. ) Finally, the deriva-
tive of In x is 1/x. Note that, since lg x = In x/In 2, the derivative of lg x
is 1/(xln2) = (lge)/x.
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l'H6pital's rule

The limit of the ratio of two functions is indeterminate if both functions
go to zero or both go to infinity. The following rule sometimes helps to
evaluate indeterminate limits.

l'H6pital's rule.- if f and g are differentiable, lim f(x) = o0,

lim g(x) = oc, and lim f'(x)/g'(x) exists, then
X--00O X-0+O

lim f(x)_ Jira f'x)

- g(x) g'(x)

Partial Differentiation

We can differentiate a function of two variables f with respect to one vari-
able, x, by treating the other variable, y, as a constant. This is the partial
derivative of f with respect to x, and is symbolized fx. Similarly, we
can find fy. From these we can find fx, fxy, and fyy. (Note: It is
possible to show that if f is continuous then fxy = fyx, so the order of
differentiation does not matter for continuous functions. )

If x = r, y = s is a solution of the simultaneous equations

fx = 0 and fy = 0

then (r, s) is a minimum point of f if both fxxfyy and fxx are
greater than zero at (r, s).

A.4 Sums
The sum of n - k + 1 terms of a sequence is written

n

E aj = ak + ak+l + ak+2 + •+ an
i=k

Properties
n n

Ecaj = ai
i=-k i=k

n n n

E~i b)= Zaj Zý bi
i=k i=k i=k

nE--(aj - aj-1) = an - ak-1

i=k
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If f is any bijective function then

n f(n)

i=k j=f(k)

Note that in general

-(ai x bi) # aj) x (Ekbi)
i=k k k

and

(abi) a b
ik i=k i=k

Arithmetic Sums

Using the above properties we have that

n

i=1

n n
E1 = (i-(-)

i=1 i=1

Sn--O

- n

We can use this idea for more difficult problems. For example,

n

E i n(n + 1)
2

i=1

We can get this result in at least two ways.
Method 1:

n

-i 1 + 2 + + n
tz=1

+
n

i= n + (n-i) + ... +
i=1

= (n+1) + (n+1) + + (n+1)
= n(n + 1)

n n(n + 1)
2

i=l
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Method 2:

n2 = n2 -o2
n

n
•- •(i 2 

- (i -- 1)2)

= (2i- 1)
i=1

n n

i=1 i=1

n
- 25-i-n

i=1

n(n + 1)

2

Using the second technique we can show that

1n26 22n(n + 1)(2n + 1)n i2 =(2n3 + 3n2 + n) = 6

In sum,

1- (n+l 1) , ni- (n +21)(n , nii-) (n +l)(n)(n3 -1)

i=O i=o i=O

In general,
n~ik- (n + 1)!k+1

5ik~k
i=0

where i!k = i!/(i - k)! = i(i - 1)(i - 2)... (i - k + 1) is the falling factorial.

Geometric Sums

nn+ x=l,_x = I n- X+1

x-l
i=o1 - x

A simple way to convince yourself that the second part is true is to do a
few steps of the division.
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Another proof follows from evaluating

n n

(X-1)YXi = (Xi+1 - Xi)

i=0 i=O
n+l
n-i Xj- I-= Z>(x - Xj-1)
j=l

- xn+1 ~xo0
- Xn+1 i

If x $ 1, dividing by x - 1 gives us the result. (What happens if x 1?)

Arithmetico-Geometric Sums

n f n(n+ 1)/2 x=l
Sixi-1 

= xn+l - (n + 1)xn + 1 x1
i=0 (X - 1) 2

We can find this sum by observing that from the definition of limits,
differentiation distributes over addition. That is,

d df dg
dx x(f + g) =-dx+ dx

Thus,

Six i- 1  
= - d i

i=0 i=0

Tx a xi- )

dx \x-iJ

nxn+l - (n + 1)xn + 1

(x - 1)2

In particular, substituting x = 2 and simplifying, we see that

n

E i2'-' = n2n - 2n + I
i=0

n

What is E i/2'?
i=0
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Asymptotics of a Special Sum

It is useful to know the following asymptotic approximation:

n ik (nk+)
Z~~ ~ i + 1 --

A.5 Probability

Probability theory attempts to find the uncertainty of events relative to
other, more primitive, events. Events are subsets of a set called the space
of outcomes of an experiment. An experiment is anything that has one or
more outcomes, all of which are known in advance: for example, flipping
a coin, rolling a die, measuring a height, or drawing a card.

The probability of an event E, written P(E), is the ratio of the number of
events favorable to the event divided by the number of all possible events.
Since this definition doesn't make much sense when there are an infinite
number of outcomes, it is better to say that the probability of an event E
out of a sample space S is any set of numbers that obey the following
axioms of probability:

1. For all events E, P(E) > 0.

2. P(S) = 1.

3. If E and F are disjoint events then P(E U F) = P(E) + P(F).

Let E be the event complementary to the event E. That is, if E occurs
then E didn't occur, if P occurs then E didn't occur. Since these events
are disjoint and E U R = S, it follows that

P(E) = 1 - P(E)

Also, using the axioms we can show that if E and F are not disjoint then

P(E U F) = P(E) + P(F) - P(E n F)

by using the equality

E U F = (E n F) U (E n F) U (E n F)
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Conditional Probability

The conditional probability of E given F, is the probability that E will
occur given that F has occurred. It is written P(EIF), and it is defined as

p(EIF) = P(E n F)

P(F)

Note that P(F) cannot be zero since we're told that F has occurred at least
once, so its probability is non-zero.

The following theorem gives us a way to reverse conditional probabili-
ties. Bayes' theorem:

P(EIF)- P(FIE)P(E)
P(F)

More generally, for n events Ej, E2, ... , En, Bayes' theorem states that

P(EjlF) = P(FIEj)P(Ei)

S P(FJEj)P(Ej)
j= 1

Independence

The events E and F are independent if

P(E n F) = P(E)P(F)

Note that if E and F are independent then the conditional probabilities
are the same as the unconditional probabilities. That is, if E and F are
independent and neither event has zero probability then

P(EIF) =P(E) and P(FIE) = P(F)

Random Variables

A random variable is a real-valued function defined on the events of an
experiment whose value depends on the outcomes of the experiment. For
example, if when flipping a coin, our only two outcomes are heads or
tails, we can define a random variable whose value is 0 if the outcome of
the experiment is tails and 1 if it's heads.
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Average and Variance

The average of a random variable X, denoted by p(X), tells us something
about the location of the values of X. The variance of a random variable
X, denoted by a 2 (X), tells us something about the spread of the values
of X. The smaller the variance, the closer most values are to p(X). The
square root of the variance is called the standard deviation.

Given an experiment with n events and a random variable X associated
with them that can take on one of n values rl, r2 ,. . ., r, with probabilities
P(X = ri), P(X = r2 ), ... , P(X = rn), then

n n

p(X) = j rjP(X = ri) ' a2(X)= Z(ri - (X))2P(X= r)
i=1 i=1

Note that u(X) is a fixed number and not a random variable, so

or2 (X) = I(X -_t(X))2

= t(X2 - 2Xpi(X) + It(X)2)

= -t(X2) 2p(X)pi(X) + It(X)2
= /'(xI) -II(X)2

Markov's Inequality

If X > 0 and r > 0
rP(X > r) <_ p(X)

Cebygev's Inequality

Applying Markov's inequality to the random variable Y = (X - (X))2 We
get

1
P(pt(X) + ro(X)>_!X > p(X) - ro(X)) >_ 1 - 12



MANIPULATING ORDER
NOTATION

B.1 The Sum Rule

Given the a functions fl,f2,. . , fa, where a is a constant, if f, = 0(gt),
Vi < n, then

a

fi= 0(gm)

where gm is the fastest growing of the functions g1, g2,. ., ga.

This rule helps us analyze programs that have a sequence of parts with
different run times. For example, consider the following algorithm

FARBLE ( n )
Segment 1
Segment 2
Segment 3

Suppose Segment 1 costs 0(n) steps, Segment 2 costs 0(n 2) steps and
Segment 3 costs 0(n ig n) steps. Then, by the sum rule, FARBLE's run time
is 0(n 2 ).

Here is the proof of the rule. Let ci and nj be the constants specified
by the definition for each of the 0 relations. Let gn be the fastest growing
function and let

no= max{ni} and c0 = max{ci}
l<i<a 1<i<a



484 B. MANIPULATING ORDER NOTATION

Then for all n > no,

a a

E fi(n) • cigi(n)
i=1 i=1

a

< E cogi(n)
i=1

a

< cogm(n)
i=1

= acogm(n)

Since aco is a constant (this is why a must be a constant), this is O(gm).
A similar proof works for Q2, and thus also for E.

B.2 The Product Rule
If f. = 0(gi), Vi < a, where a is a constant, then

a a

f 0(fl gi)
i=1 i=1

For example, consider the following algorithm

JUMBLE ( n )
for i from 1 to n

for j from 1 to n - i
MUMBLE(j)

If MUMBLE ( j ) takes 0 (j) time, then it takes 0 (n) time, and JUMBLE calls
MUMBLE 0(n) times each time the outer loop iterates. Since n - i < n, and
the outer loop iterates 0(n) times, then by the product rule, JUMBLE's Cost
is 0(n x n x n) = O(n 3 ).

Note that we cannot say immediately that JUMBLE takes Q(n 3) time, since
the inner loop does not always execute n times. Nor does MUMBLE require
Qi(n) time for each j. In general, the product rule for Q2 is trickier to apply,
and it often fails. It is usually safer to go back to the definition. In this
case, we could get a lower bound on the run time by showing that

n n-i

E cj = 8(n 3 )
i=1 j=l
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B.3 Sample Algorithm Analyses

Now let's analyze a few sample algorithms.
Consider the following program fragment

for i from 1 to n
for j from i to n

for k from i to j
m --m+i+j+k

Let's analyze this from the inside out. The run time is dominated by the
time taken in the fourth line, since it is the one most frequently executed
and each of the other lines takes constant time per iteration. The run
time depends on n only; all other variables in the program fragment are
computed in terms of n.

The fourth line requires three additions (and an assignment), so it takes

constant time per iteration. That is, we assume that the time to do the
additions does not depend on the values of m, i, j, or k, and thus the
time for this statement does not depend on n.

Now, i ranges from 1 to n, so the program fragment executes n times;
the first loop executes O(n) times. Next, j ranges from i to n, so the
last two lines execute O(n) times whenever the outermost loop executes.
Finally, k ranges from i to j, so the fourth line executes O(n) times when-
ever the j loop executes.

This nesting suggests the product rule; the run time is

O(n x n x n x c) =-O(n 3 )

where c is a constant.
But is it 1(n 3)? To be 1(n 3), it must be ca(n 3). Notice that k ranges

from i to j, which is often only a small number. Thus, we cannot say that

the k loop iterates a(n) times for each value of i and j in the program.
But for many values of i and j it will iterate more than n/2 times.

We will show that for a(n 2) different (i, j) pairs, the last line will exe-
cute Q2(n) times. When i < n/4 and ] _> 3n/4, the k loop will iterate at
least n/2 times. But there are n/4 different values of i < n/4, and for
each of those values of i, there are n/4 different values of j > 3n/4. So
i < n/4 while j > 3n/4 at least n2/16 times.

Since for each of these n 2 /16 cases, the k loop executes at least n/2
times, we can establish a lower bound on the number of times the fourth
line executes of at least n 3/32. Indeed, it executes many more times than
this, but to establish £2(n3 ), we only need this lower bound. That is, if
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f (n) is the number of times the last line executes in terms of n, then
f(n) >_ n 3/32. This means that the program indeed requires E(n 3 ) time.

We can calculate the exact number of additions done in the fourth line
as follows:

n number of additions done on ith iteration of loop 1
i=1

The number of additions done on the ith iteration is

n

E number of additions done on jth iteration of loop 2 for a given i
j=i

The number of additions done on the jth iteration for a fixed i is

Number of additions done on kth iteration of loop 3
k=i

The number of additions done on the kth iteration is always three, for any
k. Thus, the last sum is

Z3
k=i

The total number of additions is then

n n

i=1 j=i k=i

Note the correspondence with the loop structure of the program fragment.
We expand the sums one at a time from the right (that is, the innermost

sum first). The last sum is 3(j - i + 1).
Now we can plug this into the middle sum to obtain

n n n n

EZ3(j-i + 1)-=-3 1- j- 3 E i + 3ZE 1
j=i j=i j=i j=i

The third sum is 3(n - i + 1) and the second sum is 3i(n - i + 1), since
i does not depend on j. But what do we do with the first sum? Well,
notice that

n n i-1

j=i j=1 j=1

n(n + 1) (i - 1)i
2 2
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Putting all of this together we find that the number of additions done on
the ith iteration is

3 (n(n+1)__ i(i-1)). 3i(n-i+1)+ 3(n-i+1)

Plugging this into the outermost sum gives the total number of additions
as

(3 (n(n 2 + 1) + 3i(n - i + 1) + 3(n - i + 1)

Now simplify the above exact result and compare with our estimate. (Pre-
viously we estimated a lower bound of n 3 /32 iterations, which implies
about n 3 /10 additions. )

B.4 Algorithms That Call Subroutines

Now let's analyze programs that call subroutines, where the subroutine
may be the program itself.

Here's an example.

for i from 1 to n
FARBLE ( i)

How long does this fragment take? Well that depends on how long
FARBLE takes to execute, which in turn could depend on FARBLE 'S argument,
i. Just executing the loop and making the subroutine call will require
E(n) time; allocating stack space for each call and saving variables takes a
constant amount of overhead for every call, regardless of the size of i.

Now suppose FARBLE ( i) takes f (i) time. Then the total time required
by this fragment, including the subroutine calls, is

n

g(n) + •f(i)
is=1

where g(n) = E(n) is the loop overhead time.
If we analyze FARBLE, and find, say, that f(i) e O(i), then the execution

time of this fragment is

n

e(g(n) + ei) =(n 2)
i=1
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Note what we did; we used i as a representative function of the set 6(i).
(Can this be justified? Why can't we just apply the sum rule?)

Let us look at this a bit more carefully. To show that the result is 6(n2 ),
we need to show the result is both 0(n 2) and £Q(n 2).

Since f(i) = 8(i) then f(i) = 0(i). Therefore there exist constants no
and c such that f(i) <_ ci, for all i > no. It follows by induction that for
all n > no

n n

E f(i) < E ci
i=no i=no

n no-1

= Ec- Zci
=1 i=1

cn(n + 1) c(no - 1)no
2 2

This is indeed 0(n 2) but that does not prove our desired result. We have
ignored the values of f(i) for 1 < i < no. The total time for the fragment
is

n n 0 -1 n
Efmi = E f(i) + E f(i)

i=1 i=1 i=no

and so far we have only computed the second sum on the right-hand side.
We can't bound the first sum using the definition of 0, because for i < no,
f(i) does not have to be less than ci.

However, all is not lost because the sum ZE, - 1 f(i) is just some con-
stant, say cl. Why? Because no is a constant! Thus, the run time of the
fragment is

n no-, n

fi= E(i)+ f(i)
i=1 i=1 i=no

n

= c+ Ef(i)
i=no

cn(n + 1) c(no - 1)no
2 2

cn 2  cn-2 + -•- + C2
- 2 2 2

where C2 = C1 - cno(no - 1)/2 is a constant.
Thus the run time is 0(n 2). Now show that the run time is Q(n 2).
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Now let's generalize this result. Suppose FARBLE's execution time is f =
O(g) for some g. Then we want to show that the program fragment as
a whole takes 0(ng(n)) time. Will this work? Read on, the answer may
surprise you. If f is non-decreasing, then Vi < n, f(i) <_ f(n). Thus

n n

•f(i) _ f(n) = nf(n)
i=1 i=1

then, by the sum rule, nf(n) = O(ng(n)). But in general, we may not
know that f is non-decreasing so we must rely on the definition of 0.

Since f = O(g), we know there must exist constants no and c such that
f(n) < cg(n), Vn > no. Then, the run time of the program fragment is

n no- n

ff + 1 f(i)
i=1 i=1 i=no

n

= CA+ Ef(i)
i=no

n

< ci + E cg(i)
i=no

n

S0(oEg(i))

i=no

Now, if g is non-decreasing, then g(n) >_ g(i), for n > i. Thus,

n n

E cg(i) E 5 cg(n)
i=no i=no

< cng(n)

= 0(ng(n))

(If g is decreasing, then the conclusion does not hold, but decreasing
functions rarely occur in the usual algorithm analysis context).

Now try a similar proof for Q.
Well I hope your proof failed, because the result isn't true! The 0 con-

clusion may not hold for decreasing functions. When we change the "<"
to a ">" for the Q proof, this remark will also switch direction; the result
for Q will not hold for increasing functions g.
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Since f = Q(g), we know there must exist constants n0 and c such that
f(n) > cg(n), Vn > no. Then, the run time of the program fragment is

n no-1 n

f() f(i)
1i=1 ~i=no

n

- C E f(i)
i=no

n

i=no

n
=2 E( -g(i))

i=no

Now, if g is increasing, this result may not be Q(ng(n))! The reason is, if
we try to finish the proof in a manner similar to that used for the 0 result,
then we do not have

n n

Scg(i) > 5 cg(n)
i=no i=no

For example, suppose f(n) = n = Q(2n). Then

n n

-2f(i)'
i=1 i=1

- 2n+1 -2

< 2x2 n

But 2 x 2n $ Q(nn2n). One way of understanding this is that exponential
functions grow so fast that only the last term of the sum makes any real
difference to the overall cost; that is, the program fragment's run time is
determined largely by the last call to FARBLE, when FARBLE takes exponen-
tial time.



RECURRENCES

C.1 Simple Recurrences
Recurrences give the value of a function at a point in terms of its value at

other points. For example,

f(n) = f(n/2) + 1

This is like a recursive program without a termination condition; it does not
completely specify the function. To complete the specification we need a
boundary condition; that is we need the function's value at some specific
points. In algorithm analysis, these points are usually small values of n,
such as 1 or 2. To complete the function we might have

f(1) = 1

One way to solve this is to start at the boundary and compute a sequence
of values of f(n). That is,

f(1) = 1
f(2) = f(1)+1=2

f(4) = f(2)+1=3

f(8) = f(4)+1=4

Now we try to find a pattern then prove the pattern correct by induc-
tion. As we shall see, recurrences usually make induction easy. First,
though, notice something a bit unnerving about the set of values we have
computed-we skipped f(3), f(5), f(6), and f(7).

If we have an algorithm, such as binary search, then it should work
on seven elements. However, if we assume that bigger inputs can't take
less time to solve than smaller inputs then the algorithm's cost is non-
decreasing, so f(8) _> f(7) > f(4). Therefore the value we obtain won't
be off by much.
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What are these easy to obtain values? In the above, we see that we have
solutions for n = 1, 2, 4, and 8, which are all powers of 2 and which can
be written as 20, 21, 22, and 23. It appears that f( 2 k) = k + 1 would be a
good guess. Let's try that guess in an inductive proof.

Basis step: f(1) = 1, by the boundary condition, which satisfies our
assumption for k = 0. That is, f(2 0 ) = 0 + 1.

Inductive step: Assume f( 2 k) = k + 1 for some k > 0. Then f( 2 k+1) -

f( 2 k) + 1 by the definition of our recurrence. Using our induction hypoth-
esis for f( 2 k), we then have that f( 2 k+1) = (k+1)+1 = k+2, which agrees
with the inductive assumption for k + 1. So, by induction, we conclude
that f( 2 k) = k + 1 for all k > 0.

Alternately, instead of working from the bottom up, we could work from
the top down. Suppose our recurrence is

(n) 27 n=f~n) = 2f (n/4) + n n > 1

Before going on, try to guess the answer using the bottom up approach.
(Hint: sometimes it pays not to simplify too much.)

Now for the top down approach. This approach is usually the easier
way for more complicated recurrences.

f(n) = 2f(n/4)+n

= 2(2f(n/4 2 ) + n/4) + n

Multiplying out we have that

f(n) = 22f(n/42 ) + n/2 1 + n/2 0

Stating it in this form makes the pattern clearer. Again using the definition,
we can substitute for f(n/42 ) and simplify to obtain

f(n) = 23f(n/43 ) + n/2 2 + n/2' + n/2 0

At this point we guess that the pattern is

f(n) = 2 kf (n /4k) + n/ 2 k-1 + n/ 2 k-2 +-... + n/2 1 + n/2 0

We can make this look simpler by expressing it as a sum.

k-1

f(n) = 2k f (n/4k) + E n/2'
i=0
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Now what? Well, first we assume that n = 4 k. Then, it follows that
n/4k = 1, and using the boundary condition f(1) = 27, we can substitute

k-1

f(n) = 27 x 2k + En/2i
i=0

where n = 4k.

Again, keep in mind that we have only guessed this pattern, not proven
it. Use induction to prove this result now.

To reduce the sum, we note that n does not depend on i and so can
be factored out. Thus,

k-1 k-1

E n/2'= n 1/2'

Now the sum looks like the geometric sum. Thus,

k-1 k-1

Z 1/2' = E(1/2)1 = (2 - 1/ 2 k-1)
i=O i=0

Therefore

f(n) = 27 x 2 k + n(2 - 1 / 2 k-1)

where, we must remember, n = 4k.

Although for asymptotic analysis we would in general just ignore the
fraction, let's treat it carefully this once. Note that 11 2 k-1 is equal to 2/2k

and n = 4 k = 2 2k. Thus 2 k = v•. So simplifying the expression for f(n),
we get

f(n) = 27v'h+2n-2n/v•n

= 27vn-i + 2n - 2v•
= 2n + 25VH

= 0(n)

C.2 Recursive Algorithms

Here is a recursive algorithm that draws some lines (assuming a graphics
device) on a lattice of integer coordinates:
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DOODLE ( n, m)
ifn >0

DRAwLINE( n, n, m, m)
DRAwLINE (n, m, n, m)
DOODLE(n - 1, m)

How long does DOODLE ( n, n) take to finish doodling as a function of
n? Well, DOODLE either does nothing, when n = 0, or it draws two lines
and then calls itself recursively with n reduced by one. To estimate its run
time, let's compute the number of lines drawn. We will assume that the
time to draw a line is independent of its length. (Is this realistic?)

Let f(n) be the number of lines DOODLE draws when called with a first
parameter n. Then

f (n)±0 n=0f~nf f(n -- 1) +2 n > 0

This is slightly different from our two previous recurrences-here we
only subtract one from n, rather than divide it by a constant. However,
we can still use either the top down approach or the bottom up approach.
For example

f(n) = f(n -1) + 2

- f(n-2)+2+2

= f(n-3)+2+2+2
= f(n-k)+2k
= f(n-n)+2n

= 2n

where the last is obtained by plugging in the boundary condition. Thus
DOODLE'S run time is 0(n).

If we assume that the run time is proportional to the length of the lines
drawn, then the problem becomes more difficult. The length of the first
line is V/(n - m) and the length of the second line is 0. Thus, DOODLE'S
drawing time will be

f() 0 n= 0

f(n)= f(n-1)+x/2(n-m)+1 n >0

because if nothing is drawn it's reasonable to assume that no drawing time
is required and the 1 is the time I arbitrarily pick to draw a point (the line
of length 0). I will leave this to you to puzzle out.
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Here is another recursive function:

QUIBBLE ( n)
if n =0

then return 1
else return QUIBBLE ( n - 1 ) + QUIBBLE (n - 1)

If we let f(n) count the number of additions, then

f~) 0 n= 0

fn= 2f(n -1) + I n >0

This leads to

f(n) = 2f(n-1)+I

= 2(2f(n-2)+1)+1

= 4f(n-2)+2+I

= 23f(n - 3) + 22 + 21 + 20

k-1

= 2kf(n-k)+E2i
i=O

n-1
= 2nf(0)+E21

i=O

= 2 - 1

Verify this result by induction.
Finally, here is a generic divide and conquer algorithm:

DAND-C(L)
if IlI > 1

in IL12 steps divide L into thirds LI, L2, L3
DAND-C(L 1 )
DAND-C(L 2 )
D-ANDC(L 3 )
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If we let n I, and let f(n) be the run time for D-ANDC when called
with L, then the amount of time required is

fn c n l

3f(n/3) + n2  n >

where c is a constant. Then

f(n) = 3f(n/3) + n2

= 32f(n/32 ) + 3(n/3)2 + n2

k-I

= 3kf(n1/3 k) + n 2 E(1/3)i
i=0

= c 3 k + n 2 (i(1 /(3)k

= e(n 2 )

C.3 A Tricky Example

Sometimes a recurrence looks difficult but it can be transformed into a
simpler one very easily.

Consider
f(n) = vn-n f(vI) + 0(n)

Let g(n) = f(n)/n. Then,

g(n) = g(vh) + 0(1)

Let h(n) = g(22"). Then,

h(n) = h(n - 1) + 0(1)

Therefore,
h(n) = O(n)

This implies that,
g(n) = O(lglg n)

And so,
f(n) = O(n lglg n)

Now solve the recurrence again by trying the transformations in the
reverse order.
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C.4 A Long Example

Consider the following recurrence

1 n=
f(n)= 8 n= 2

3f (n12) + 4f (n/4) + 3n n > 2

We shall show that
f(2n) = 2n(3 x 2n -2)

so,

f(n) = O(n2)

The only kind of recurrences we need to know to solve the above prob-
lem are linear recurrences in one variable with constant coefficients, and
these are the easiest ones to solve. These recurrences are

cif(n) + c 2f(n - 1) +... + caf(n - a) = g(n)

where the cis are constants and g(n) is some function of n. We are given
a boundary values, where a is a constant.

First we ignore g(n) and solve the equation

cif(n) + c2f(n - 1) +..-- + Caf(n - a) = 0

This is the homogeneous equation of the recurrence. Since any solution
to the homogeneous equation can be added to a solution to the general
equation yielding yet another solution to the general equation (why?) we
really have a family of solutions and our task is to identify the most general
solution.

The homogeneous equation of a linear recurrence with constant coeffi-
cients has a solution proportional to rn where r is some non-zero constant.
So we try f(n) = rn, yielding the equation

clrn +C 2 rn-l +.''+carn-a = 0

Dividing by rn-a we get the characteristic equation of the recurrence

clra +c 2 ra-i +...+ca =0

This is a polynomial in r of degree a. Suppose this equation has solu-
tions ri, r2,. . . , ra. If these a solutions are all different then the solution to
the homogeneous equation is a linear combination of each of them. That
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is, it is equal to some constant times r, + some constant times r 2 + ''' +
some constant times ra. (There is a complication if some of the solutions
are the same. )

Once we solve the homogeneous equation we guess a solution for the
general equation depending on g(n). Usually g(n) is a polynomial in n,
let's say of degree i, and the general solution will contain a polynomial
of n of degree i whose coefficients we determine by substituting the a
boundary values.

This may sound complicated but it's easy after you do a few. It is
important to know how to solve linear recurrences with constant coeffi-
cients because they're the simplest and because many recurrences can be
transformed into them (and so solved). A common technique with com-
plicated recurrences is to try to reduce them to a simpler recurrence.

Here is the recurrence again

I n=
f (n) = 8 n =2

3f (n/2) + 4f (n/4) + 3n n > 2

Trying a few iterations of substitution we get bogged down with the 3n
term. The 3n makes things messy, so let's transform the recurrence by
dividing by n. Consider the function g(n) = f(n)/n, then

S1 n=lI

g(n) = 4 n = 23g(n/2) + g(n/4) + 3 n > 2{2>
Note that the boundary values have changed.

Now we transform again. It would be nice to "take logs" and transform
n/2 and n/4 to n - 1 and n - 2, respectively. This is easy to do. Consider
the function h(n) = g(2n), then

1 n=O
h(n) = 4 n 1

3h(n -1) +h(n -2) +3 n > I

This is a linear recurrence with constant coefficients! (Note that the bound-
ary values have changed again. )

(Could we have done these two transformations in the reverse order?
What could we try if we had n/2 and n/3 instead of two powers of 2?
Hint: think about transforming to a function of two variables. )
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The characteristic equation of this recurrence is

r 2 3r 1 0

2

which has solutions 2 and -1/2. Thus we look for solutions to the general
equation of the form

h(n) = a2n + b - 2

The extra term "3" of the recurrence is a polynomial of degree 0 so we try a
polynomial of degree 0, for example, "c", and we get that c = (3/2)c+c+3,
which has solution c = -2.

Now we substitute in the two boundary values, yielding the simultane-
ous equations

a+b-2=1 = a+b=3
b

2a---2=4 == 4a-b=12
2

Solving, we have that
a =3, b=0

Thus, h(n) = 3 x 2 n - 2. Sof(2n) = 2n(3 x 2 n -2).
We could have continued to transform h(n) into the function h, where

hi(n) = h(n) + 2, giving us the recurrence
3 n =0

hi(n) = 6 n =1
3hl(n - 1) + hl(n - 2) n > 1

this recurrence has no constant added term! Thus it is already homoge-
neous and has a simple solution.

You're probably asking yourself "How do I known which transforms to
try?" Unfortunately so far the only answer is: experience. For example,
in the last transformation to hl, experience tells us that a homogeneous
recurrence is easier to solve than a non-homogeneous one. So we look
for a constant c such that if we substitute hi(n) = h(n) + c then the recur-
rence for hI would be homogeneous. Since hi(n) = h(n) + c is equivalent
to h(n) = hi(n) - c, the only way the recurrence for h, could be homo-
geneous is if

3
(hi(n) - c) = -3(hi(n/2) - c) + (hi(n/4) - c) + 3

And this can happen only when c = 2. This is really all that we did when
we found the solution of the non-homogeneous equation above.
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collision, in a hash array, 135 computer memory sizes, 21
commutative functions, 381, 406 computerized axial tomography, 396
comparison conceptually hard problem, 10

three-way, 83 conditional probability, 481
two-way, 99 connected

comparison-based model, 83 component, 325
comparison-swap model, 232 graph, 324, 347
complement coAgP, 435

of a class, 455 consistency of a formal system, 418, 454
of a language, 435, 455 constant cost, 44
of an event, 480 construction problem, 9

complete constructivist mathematics, 419
binary tree, 243, 282 continuous function, 474
graph, 325, 347 continuum hypothesis, 419, 455

completeness independence of, 419
of a formal system, 418, 455 contradiction, proof by, 40
of a language in a class, 432, 456 contraharmonic mean, 219

complex number, 400, 405 conventions
complexity class, 435, 456 on functions, xxvi

WPP, 436 on statements, xxvi
17W, 438 on symbols, xxv
A'PW, 429 Cook-Levin theorem, 432, 456
7', 429 coP, 435
WP', 436 coprime numbers, 369, 404
"R-P, 437 correctness of algorithms, 310
ZPP, 437 cost
coKIVP, 435 constant, 44
coP, 435 cubic, 44
Space, 435 exponential, 44, 55

complexity theory, 10, 137, 416 kinds of
component subgraph, 347 average, 17, 140
composite number, 53, 61, 405 average expected, 127, 140
compositeness acceptance problem, 435 best, 17
composition expected, 127, 140

of functions, 381, 406 worst, 17, 139
of polynomials, 422 worst expected, 127, 140
polynomials closed under, 422 linear, 44

computability theory, 10, 416 logarithmic, 44
Church-Turing hypothesis, 428, 455 lower bound on, 21

computation on average cost, 140
path of a turing machine, 426 on worst cost, 140
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cost (cont.) cyclic graph, 330, 348
polylogarithmic, 44
polynomial, 44, 54 dag (directed acyclic graph), 331, 348
quadratic, 44 DARPA (U.S. Defense Advanced Research
run time, 12 Projects Agency), 349
sublinear, 44 data abstraction, 310
subquadratic, 44 decision problem, 9, 421
upper bound on, 17 decision tree, 113, 139

count sort, 234 problems with, 263
countable set, 440 default environment, 13
counterfeit coins problem, 147 degree, of a node in a graph, 330, 348
covert channel, 389, 408 Department of Defense (U.S.), 380
cryptology, 55, 374 department ao n, 33 8

anonymous credit problem, 387 depth-first exploration, 336
authentication problem, 374, 385 of a function, 60
cash dispenser problem, 386 second, 101
covert channel, 408 se Uca
cryptanalysis, 374 DES (the U.S. Data Encryption Standard), 379

cryptography, 374 deviation, standard, 169, 482
cryptosystem, 374 diagonalization, proof by, 419, 440

computationally secure, 378 dictionary, 316, 347

covert channel in, 389 differential calculus, 41

public key, 380 differentiation, 46, 475

secret key, 378 chain rule of, 475

secure, 377 partial, 476

unicity of, 378 Diffie-Hellman key exchange, 381

DES (U.S. Data Encryption Standard), 379 digraph, 330

and IBM, 379 dimensions

and the NSA, 379 of algorithms, 445

security of, 379 of analysis, 23, 310
speed of, 379 diophantine equation, 419

Diffie-Hellman key exchange, 381 directed
monoalphabetic system, 379 acyclic graph, 331
one-way function, 380, 450 graph, 307
privacy problem, 387 discrete
remote cash dispenser problem, 387 Fourier transform, 401
secrecy problem, 373 logarithm, see modular logarithm
smartcard, 387 mathematics, 143

allows anonymous cash, 410 disjoint events, 90, 139
allows digital signatures, 393 disjoint set structure, see partition structure
physical implementation of, 410 divide and conquer, 172, 183, 327

trapdoor, 379 problems with, 186
treaty compliance problem, 388 divide and guess, 36
using substitution, 377 divisibility, 53
using transposition, 377 domain of a function, 469

cubic cost, 44 dominating set of nodes in a graph, 462
cybernetics, 262 dual poset, 207, 212
cycle, 330, 348 Dutch national flag problem, 294
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dynamic fast Fourier transform, 402
data, 309 FBI (U.S. Federal Bureau of Investigation), 135
programming, 57 Fermat's last theorem, 370, 451
structure, 309 Fermat's theorem, 369, 372, 407

dynamizing static structures, 320 fertile node, of a tree, 121, 139
fibonacci number, 31, 60

earthquakes, 27 in arithmetical problems, 366
edge, of a graph, 305 in unsolvability, 420
electronic mail, 343 fingerprinting function, 135
element uniqueness problem, 294 finite simple groups classification theorem, 448
ellipsoid algorithm, 423 first-order recurrence, 198, 213, 256
English, most active words in, 261 flat earth theory, 59
entropy floor function, 100, 139, 469

and cybernetics, 262 Ford-Johnson sort, see merge insert sort
in information theory, 261, 262, 379 forest, a set of trees, 320, 342
in statistical mechanics, 261 formal system, 418, 454
is low in human languages, 379 arithmetic as example of, 418

environment axioms of, 418, 454
default, 13 completeness of, 418, 455
of a model, 11 consistency of, 418, 454

Epistleindependence of axioms of, 419, 455
equal almost everywhere, 460 inference rule of, 418, 454
equivalence relation, 218 in , 418, 454
ergodic algorithm, 447 proof in, 418, 454Euler's constant, 168, 213 purpose of, 418
Euler-Fermat theorem, 369, 407 terminating algorithms essential for, 424
eulerian theorem in, 418, 454

cycle 309 348 formalism, in mathematics, 417
cycle 9, 348 forward-backward strategy, 16
graph, 348 Fourier transform, 396

evensin probability theory, 90, 138, 480 discrete, 401
disjoint, 90 fast, 402
independent, 90, 139 full-history recurrence, 197, 213, 255

expected average cost, 148 function
expected cost, 127, 140 function

difference from average cost, 127 bijective, 469
expected worst cost, 148 boolean, 440
experiment, in probability theory, 90, 261, 480 ceiling, 100, 139, 469

exponential choose, 30, 60, 470
cost, 44, 55 continuous at a point, 474
function, 55, 61 derivative of, 474

domain of, 469
factor factorial, 28, 60, 470

algorithm, 361 falling, 470
largest common, 362, 405 floor, 100, 139, 469
of an integer, 405 increasing, 469

factorial function, 28, 60, 470 iterated logarithm, 51, 298
falling, 470 Jacobi, 390

factors of 267 -1, 54 kinds of
falling factorial function, 470 bijective, 469
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function (cont.) fundamental theorem of arithmetic, see unique
commutative, 381, 406 factors theorem
exponential, 61
fingerprinting, 135 game
hash, 135 of hangman, 179
increasing, 469 of the smallest random number, 292
linear, 61 of the X of X, 457
non-decreasing, xxvi, 469 of twenty questions, 260
one-to-one, 49, 469 theory, 163
one-way, 380, 450 Gauss' motto, 408
onto, 469 geometric
polynomial, 61 mean, 219
real-valued, 469 sums, 478
total, 462 gigabyte, 21
trapdoor, 54, 379 goal, of a model, 11

limit of, 473 golden ratio, 61, 63,366
logarithm, 469 gossips problem, 354
modular graph, 305, 347

logarithm, 369, 406 acyclic, 330, 348

square, 369, 405 articulation node of, 353
square root, 368, 405 biconnected, 353

nearest integer, 104, 469 chromatic number, 392, 406, 431
non-decreasing, 469 clique of, 462

one-to-one, 469 colorability problem, 392, 422, 431

onto, 469 is .KP-complete, 392, 422

operators of complete, 325, 347
composition, 381,406,422 component subgraph, 347
derivative, 46, 60 connected, 324, 347
limit, 4i1, 60 connected component, 325

second derivative, 101 cycle of, 348

quotient, 363, 405 cyclic, 330, 348
range of, 469 dag, 331, 348
reavanged, 469 descendant of a node in, 332
real-valued, 469 digraph, 330
remainder, 363, 405 dag, 331, 348
speeds of leaf of, 348

constant, 44 root of, 348
cubic, 44 strongly connected, 353
exponential, 44 directed, 307
linear, 44 directed acyclic, 331
logarithmic, 44 dominating set of, 462
polylogarithmic, 44 eulerian, 348
polynomial, 44 eulerian cycle, 309, 348
quadratic, 44 exploration
sublinear, 44 breadth-first, 336
subquadratic, 44 depth-first, 336

total, 462 priority-first, 337
totient, 369, 405 hamiltonian, 308, 348



Subject Index 527

hamiltonian cycle, 308, 348 heronian mean, 219
independent set of, 462 heuristic algorithm, 208, 446
isomorphic, 306, 347 hiker problem, 52
network, 307, 340, 347 Hilbert's problems
node Decision, 421

degree, 330, 348 first, 418
indegree, 347 second, 418
outdegree, 347 tenth, 419

node cover of, 462 homogeneous equation of a recurrence, 497
non-isomorphism problem, 438 hop (a rerouting of a telephone call), 324
path, 347 human hearing range, 400
random, 351 human sight range, 400
representations of, 334 Hz (Hertz), 400
simple, 306
spanning forest of, 342 IBM (International Business Machines
spanning tree of, 340, 348 Corporation), 379
subgraph, 347 imaginary number, 405
tree, 326, 348 imp (interface message processor), 344

graphic equalizer, as a filter, 398 implicit structure, 177, 213
graphics programs, 8 inaccessible information, 451
greatest common divisor, see largest common increasing function, 469

factor indegree, of a node in a graph, 331, 347
greedy strategy, 57, 121, 250, 342 independence, of the continuum hypothesis,
growth rate, 4, 38 419
guess and test, 87 independent events, 90, 139, 481
guessing sums, 36 independent set of nodes in a graph, 462

half-balanced binary tree, 352 indeterminate limit, 47, 476
hamiltonian induction, 20, 468

cycle, 308, 348 basis step of, 21
cycle problem constructive, 204

is AKP-complete, 308 inductive step of, 21
graph, 348 problem with, 86

hangman (a game), 179 proof by, 20, 272, 326
Hanoi, towers of, see towers of Hanoi structural, 115
hardness with respect to a class, 432, 456 inequality
harmonic Cebygev's, 133, 170, 215

mean, 219 Markov's, 170, 215
numbers, 134, 167, 212, 471 inference rule, 418, 454

hash infinite apples problem, 47
function, 135 information
perfect, 136 broadcast problem, 340

hashing, 135 hiding, 310, 311
heap, 241, 282, 311, 318, 347 and judo, 312

binomial, 318 inaccessible, 451
right-heap, 352 theory, 137, 260

height, of a tree, 113, 139 entropy function of, 261, 262, 379
Heisenberg uncertainty, in quantum physics, lower bound from, 260

418 inner product of two vectors, 384, 406
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input-output lower bound, 89 leaf
insert sort, 233 of a digraph, 331, 348

binary, 239 of a tree, 113, 139
linear, 238 left-complete binary tree, 243, 282

instance, of a problem, 7 level order, of a tree, 247
integration, 266 level, of a node in a rooted tree, 113, 139
interactive proof, 391, 437, 447 limit, 41, 473

different from zero-knowledge, 448 indeterminate, 47, 476
potentially infinite, 448 of a function, 60
with bounded prover, 451 linear
with two provers, 438 cost, 44

interface message processor, in the net, 344 function, 61
interleaved algorithm, 134 insert sort, 238
internet, 343 order, 161, 212
interpolation search, 132 program, 423,455
inversion, of a permutation, 236 recurrence, 198, 213,256

I-7, 438 linear programming problem, 423, 455
irreflexivity, 218 linked list, 129
isomorphic graphs, 306, 347 as a graph, 307
iterated logarithm, 51, 298 logarithm, 27, 60, 469
iterative versus recursive, 96 base e, 43, 469, 473

base x, 27
Jacobi function, 390 base two, 27, 469
James, Epistle of, 67 iterated, 51, 298
jump insert sort, 286, 296 modular, 369, 406

k-ary tree, 351 logarithmic cost, 44

key lower bound, 6, 21

for searching, 82 adversarial, 178

for sorting, 232 and thermodynamics, 22

in cryptology, 375 information, 260

kilobyte, 21 weakness of, 263
KISS principle (keep it simple, stupid), 92 input-output, 89

knapsack problem, 383, 422 reasons for, 25

is NP-complete, 422 state space, 189

koalas, 129 weakness of, 25
Kolmogorov complexity, see algorithmic

information theory magnetic resonance scanner, 397
K6nigsberg bridges problem, 308, 349 majority problem, 225, 228

Markov's inequality, 170, 215
lamp problem, 69 mathematics, 8
language and computability, 420

a set of strings, 429, 455 and critical thinking, 8
complement of, 435, 455 and formal proof, 418

large prime, 408 and formal systems, 418
largest common factor, 362, 405 and proofs, 447
largest known prime, 64, 76 and symbol manipulation, 8
lazy evaluation, in programming languages, 97 and symbols, 359
l'H6pital's rule, 48, 476 as a search for pattern, 35
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constructivist, 419 model, 4
fields of bit-cost, 358

algorithmic information theory, 410 comparison-based, 83
calculus, 41 comparison-swap, 232
complex analysis, 400 is a set of algorithms, 23
discrete, 143 of a problem, 6, 11
game theory, 163 touch-based, 310
information theory, 137, 260 modular
logic, 421 logarithm, 369, 406
number theory, 366 square, 369, 405
probability theory, 89, 137, 480 square root, 368, 405
random graph theory, 351 monoalphabetic cryptosystem, 379
real analysis, 473 monochrome triangle problem, 395
recursive function theory, 432 MRI scanner (magnetic resonance imaging),
set theory, 417 397
statistics, 169 multi-dimensional search, 137

formalist, 417 mutilated chessboard problem, 53
foundations of, 417
napkin, 27 napkin mathematics, 27
probability theory, 480 National Bureau of Standards (U.S.), 379
reduction joke, 84 National Security Agency (U.S.), 379

max poset, 165 nearest integer function, 104, 469
mean, 213 nearest neighbors problem, 137

arithmetic, 219 necessity fallacy, 172
contraharmonic, 219 network, 307, 340, 347
geometric, 219 NMR scanner (nuclear magnetic resonance),
harmonic, 219 397
heronian, 219 node
properties of, 219 of a graph, 305
root mean square, 219 of a tree, 113

median, 160, 193, 213 node cover of a graph, 462
megabyte, 21 non-decreasing function, 469
menu, a set of operations non-determinism

of an application, 315 is magic, 427
profile of, 315 origin of, 427

merge insert sort, 271 non-deterministic turing machine, 426
merge sort, 233 binary computation tree of, 427
mergeable queue, 318, 347 difference from parallel computer, 426
merging non-transitive relation, 163

adversary for, 273 notation, order, 43
binary, 274 A"P, 429

minimal poset, 212 A/"P-complete problem, 56, 432
minimum spanning tree, see cheapest spanning flP-hard problem, 432

tree NSA (U.S. National Security Agency), 379
mnemonics nuclear magnetic resonance scanner, 397

for r7, 100 number
for e, 43 Carmichael, 370, 405

mode, 160, 213 Champernowne's, 394, 406
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number (contw) orderable set, 212
complex, 400, 405 partial, 212

principal root of unity, 405 partially ordered set, 212
root of unity, 405 poset, 212

composite, 53, 61, 405 order k selection, 229
coprime, 369, 404 orderable set, 161, 212
even, 54 ordered apples problem, 74
factor of, 405 ordered tree, 113, 139
fibonacci, 31, 60, 366, 420 outdegree, of a node in a graph, 331, 347
harmonic, 134, 167, 212, 471
imaginary, 405 -P, 429
odd, 54 paradox
prime, 53, 61, 404 Russell's, 418

largest found by a general algorithm, 408 voters, 163
largest known, 64, 76 partial

pseudoprime, 372, 405 derivative, 476
pseudorandom, 406 fractions, 200, 213, 472
square, 67 order, 161, 212
square-free, 413 partially ordered set, see poset
theory, 366 partition
triangular, 68 a collection of disjoint sets, 322

numerical analysis, 357 as a structure, 322, 347
nuts and bolts problem, 293 problem, 205

Pascal's relation, 175, 470
object-oriented programming language, 350 Pascal's triangle, 175
oblivious search, 137 Pascal, a programming language, 13, 90, 97
Occam's razor, 92 path length, of a tree, 121, 139
off-line algorithm, 240, 283 path, in a graph, 347
oh, order notation, 44 percentile, 160, 213
on-line algorithm, 235, 283 perfect hashing, 136
one-time pad, in cryptology, 377 permutation, 166, 212, 470
one-to-one function, 49, 469 PET scanner (positron emission tomography),
one-way function, 380, 450 397
onto function, 469 petabyte, 21, 27
optimality, 24 pivot, 193

asymptotic, 24 pixel, 1, 8, 398
depends on model, 24 plaintext, in cryptology, 375
of binary search pointer, 129

average case, 121 polylogarithmic cost, 44
worst case, 112 polynomial

of linear search cost, 44, 54
average case, 95 function, 54, 61
worst case, 88 transformation, 428, 455

of towers of Hanoi solution, 26 polynomial time for during machines, 428
optimization problem, 9 polynomially equivalent problems, 429, 455
order poset (partially ordered set), 162, 212

linear, 212 as a dag, 331
notation, 43 as a graph, 307
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dual, 207, 212 .AP-complete, 56, 432
max, 165 graph colorability, 392, 422, 431
maximal element of, 227 hamiltonian cycle, 308
minimal, 212 knapsack, 422
minimal element of, 227 optimal addition chain, 362
reduced, 278 satisfiability, 430
singleton element of, 162 travelling salesman, 308, 422
solving a problem, 164 AFP-hard, 432
subposet, 162, 165, 212 adaptive, 9

positron emission scanner, 397 adaptive list search, 152
P-P, 436 anonymous credit, 387
predictable algorithm, 112, 139 authentication, 374, 385

in terms of adversaries, 178 broadcasting information, 340
Presburger arithmetic, 442 cash dispenser, 386
presidential elections, 164 celebrity, 352
prime factors distribution theorem, 370, 407 compositeness acceptance, 435
prime number, 53, 61, 404 construction, 9

largest found by a general algorithm, 408 counterfeit coin, 147
largest known, 64, 76 decision, 9
pseudoprime, 372, 405 definition of solving, 7
theorem, 370, 371, 407 Dutch national flag, 294

primeness acceptance problem, 435 element uniqueness, 294
principal root of unity, 400 Fibonacci's, 31
principle of indifference, 92 gossips, 354
priority queue, 317, 347 graph non-isomorphism, 438
priority-first exploration, 337 hiker, 52
privacy problem, 387 Hilbert's
probabilistic Decision, 421

algorithm, 57, 208, 371, 446 first, 418
as a probabilistic turing machine, 436 second, 418
not necessarily randomized, 209 tenth, 419

turing machine, 436 infinite apples, 47
not necessarily randomized, 436 instance of, 7

probability, 139 kinds of, 9, 10
Bayes' theorem, 481 AKP-complete, 56, 432
conditional, 481 A/P-hard, 432
disjoint events in, 90 analytically hard, 10
distribution, 95 computationally hard, 10, 55, 429, 455
independent events in, 90, 139, 481 computationally unsolvable, 10, 420, 455
of an event, 90, 480 conceptually hard, 10, 55
of an experiment, 90 polynomially equivalent, 429, 455
sum rule of, 91 polynomially transformable, 428, 455
theory, 89, 137, 480 search, 9

axioms of, 480 structuring, 9
random variables, 481 knapsack, 383

uniform, 130 Konigsberg bridges, 308, 349
problem, 6 lamp, 69

3x + 1, 64 linear programming, 423, 455
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problem (cont.) interactive, 391, 437, 447
lower bound on average cost, 95, 140 must be finite, 87
lower bound on worst cost, 140 potentially infinite, 448
majority, 225, 228 what is it?, 447
monochrome triangles in complete graphs, why do it?, 86

395 zero-knowledge, 263, 391, 448
multi-dimensional search, 137 proverb, 287, 357
mutilated chessboard, 53 psalms, 201
nearest neighbors, 137 pseudoprime number, 372, 405
nuts and bolts, 293 pseudorandom sequence, 395, 406
optimization, 9 Pspace, 435
ordered apples, 74 psychoanalysis, 416
partition, 205 public key cryptosystem, 380
primeness acceptance, 435 purpose of formal systems, 418
privacy, 387
remote cash dispenser, 387 quadratic
safe sex, 64, 75 binary search, 132satisfiability, 56, 430 cost, 44
satisfiability acc e, 430 residue, see modular square
satisfiability acceptance, 430 select sort, 291
secrecy, 373 quantum theory, 416
sequencing, 330 queue, 316, 334, 337, 347size of, 7 as a priority queue, 316, 347

size f, binomial, 320smallest random number, 292 priority, 317
stack of coins, 293 quotient, 363, 405
surgeons and patients, 75 quotient function, 363, 405
syphilis test, 147
telephone, 324 radix sort, 280
tossing students, 154 Ramsey theory, 395
towers of Hanoi, 11, 308 random
travelling salesman, 308 number
treaty compliance, 388 essential in cryptography, 391
was a virgin once, xviii what is it?, 393
weighing, 147 pseudorandom sequence, 395

profile, of a menu, 315 sequence
programming language properties of, 394

lazy evaluation in, 97 pseudorandom, 406
object-oriented, 350 synonyms of, 394
Pascal, 13, 90, 97 variable, 169, 213, 481
short circuiting in, 97 random graph theory, 351

projective scaling algorithm, 423 randomized
proof algorithm, 57, 125, 137, 139, 194, 254, 446

and relation to knowledge, 447 expected cost, 127
as a game, 390 in terms of adversaries, 179
by contradiction, 40, 88, 96, 331, 340 list search, 152
by diagonalization, 419, 440 not necessarily probabilistic, 209
by induction, 20, 109, 114, 468 turing machine
in a formal system, 418, 454 not necessarily probabilistic, 436



Subject Index 533

range of a function, 469 rule
real-valued function, 469 chain, 475
recurrence, 20, 60 l'H6pital's, 48, 476

boundary condition of, 21 of inference, 418, 454
characteristic equation of, 497 sum, 91
designing algorithms with, 186 run time, 12
first-order, 198, 213, 256 not always non-decreasing, 358
full-history, 197, 213, 255 Russell's paradox, 418
homogeneous equation of, 497
linear, 198, 213, 256 safe sex problem, 64, 75
solution sample space, in probability theory, 90, 138

by guess and test, 87 satisfiability acceptance problem, 430
by substitute and guess, 87 satisfiability problem, 56, 430
by transformation, 199, 256 scan-line, 400

recursive scanner
algorithm, 15 computerized axial tomography, 396
tail recursive, 212, 224 magnetic resonance, 397

recursive function theory, 432 nuclear magnetic resonance, 397
reduced poset, 278 positron emission, 397
reduction strategy, 84 ultrasound, 397
reflexivity, 218 scytale, in cryptology, 377
relation, 212 search

a set of ordered pairs, 161 binary, 105
asymmetric, 161, 212, 218 domain of, 81
equivalence, 218 interpolation, 132
irreflexive, 218 jump, 99
non-transitive, 163 key, 82
on ordered binary trees, 352 linear, 84
reflexive, 218 oblivious, 137
symmetric, 218 probes of, 81
transitive, 161, 212, 218 problem, 9, 81

relatively prime, see coprime realistic, 81
relaxed algorithm, 208 sentinel, 97
remainder, 363, 405 tree, 356
remainder function, 363, 405 secrecy problem, 373
remote cash dispenser problem, 387 secret key cryptosystem, 378
restaurant, is like a structure, 310 select sort, 233
Richter scale, for earthquake intensity, 27 selection
right-heap, 352 order k, 229
Rolling Stones, 432 problem, 160
root sentinel

of a digraph, 331, 348 in searching, 97
of a tree, 113 in sorting, 239
of unity, 400, 405 sequencing problem, 330

principal, 400, 405 set, 467
root mean square mean, 219 closed, 455
rooted tree, 113, 139 countably infinite, 440
RP, 437 difference, 467
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set (cont.) topological, 332
element of, 467 using trees, 240
intersection, 467 sorting oranges, 235
size of infinite, 439 space-time tradeoff, 177, 252
subset of, 467 spanning
symmetric difference, 460 forest, 342
theory, 417 tree, 340, 348

countable sets in, 440 split sort, 233
uncountable, 440 square-free number, 413
union, 467 stable sort, 283

shell sort, see jump insert sort stack, 258, 316, 334, 337, 347
short circuiting, in programming languages, 97 as a priority queue, 316, 347
shortest path, see cheapest path stack of coins problem, 293
sieve algorithm, 366 standard deviation, 169, 213, 482
simple graph, 306 state space lower bound, 189
simplex algorithm, 423 statistical mechanics, 261
simplicity strategy, 92 statistics, 169
singleton, 212 type one and type two errors in, 436
size stereo systems, 398

of a problem, 7 Stirling numbers of the first kind, 221
of a structure, 309 Stirling's approximation, 266, 471
of an arithmetic problem, 358 strategy

smallest random number problem, 292 balance, 104
smartcard, 387 balanced runs, 250

allows anonymous cash, 410 divide and conquer, 104
allows digital signatures, 393 dynamic programming, 57
physical implementation of, 410 forward-backward, 16

software engineering, 8 greedy, 57, 250, 342
solving a problem, 7 reduction, 84
sorting, 82 simplicity, 92

adaptively, 287 string, a finite sequence of symbols, 429, 455
binary insert, 239 strongly connected digraph, 353
bubble, 235 structure
by counting, 234 binomial tree, 174
by distributing, 279 data abstraction in, 310
by inserting, 233 dictionary, 316, 347

binary, 239 dynamic, 309
linear, 238 dynamizing, 320

by jump inserting, 296 implementation of, 315
by merge inserting, 271 implicit, 177, 213
by merging, 233 information hiding in, 310, 311
by quadratic selection, 291 is like learning judo, 312
by selecting, 233 is like a restaurant, 310
by splitting, 233 mergeable queue, 318, 347
by swapping, 235 partition, 322, 347
stably, 258, 283 priority queue, 347
strategies, 233 queue, 347
there may be no optimal sort, 277 recursively defined
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binomial tree, 174 of computability, 10, 416
size of, 309 of computation, 457
stack, 258, 347 of information, 137

structuring problem, 9 of numbers, 366
subgraph, 347 of probability, 89, 137, 480
subliminal channel, see covert channel of quanta, 416
sublinear cost, 44 of Ramsey numbers, 395
subposet, 212 of random graphs, 351
subquadratic cost, 44 of recursive functions, 432
substitute and guess, 87, 108, 244 of sets, 417
substitution cryptosystem, 377 what it's for, 281, 453
subtract and guess, 36 thermodynamics, 261
sum rule, in probability theory, 91 3x + 1 problem, 64
sums, 33, 476 three-way comparison, 83

arithmetic, 477 tomography, 396
arithmetico-geometric, 479 topological sort, 332
double similar to sorting, 332

swapping the order of, 195 tossing students problem, 154
geometric, 478 total function, 462
properties of, 476 totient, 369, 405
solving by guessing, 36 totient function, 369, 405

superincreasing sequence, 384, 406 touch-based model, 310
surgeons and patients problem, 75 Tower of Brahma, see towers of Hanoi
swap sort, 235 towers of Hanoi, 84, 104, 421
symmetric difference, of two sets, 460 as a graph problem, 308
symmetry, 218 lower bound of, 26
syphilis test problem, 147 problem, 11

recurrence, 20, 177

tail recursive algorithm, 212, 224 upper bound of, 20
telephone problem, 324 transformation algorithm, 199, 256
terabyte, 21 transitive relation, 161, 212
theorem, 418, 454 transitivity, 72, 161, 218, 324

Bayes', 481 transposition cryptosystem, 377
binomial, 30, 471 trapdoor function, 54, 379
Chinese remainder, 370, 407 travelling salesman problem, 308, 422
Cook-Levin, 432, 456 is AK'-complete, 308, 422
Euler-Fermat, 369, 407 treaty compliance problem, 388
Fermat's, 369, 372, 407 tree, 113, 326, 348
Fermat's last, 370, 451 k-ary, 351
finite simple groups classification, 448 as a graph, 326
fundamental theorem of arithmetic, see binary, 113, 139, 241

unique factors theorem complete, 243, 282
prime factors distribution, 370, 407 half-balanced, 352
prime number, 370, 371, 407 left-complete, 243, 282
unique factors, 362, 406 binomial, 174, 213, 241

theory decision, 139
of algorithmic information, 410 fertile node of, 121, 139
of complexity, 10, 137, 416 height, 113, 139
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tree (cont.) uncertainty principle, in quantum physics, 418
leaf of, 113, 139 unicity, of a cryptosystem, 378
level order, 247 uniform probability, 130
levels of, 139 union-find structure, see partition structure
ordered, 113, 139 unique factors theorem, 362, 406
path length, 121, 139 upper bound, 6, 17
rooted, 113, 139
sort, 240 variance, 95, 169, 213, 482
spanning, 340, 348 voters paradox, 163

cheapest, 340
trickle-down, in heap sort, 243 wavelets, 409
trillion (a million million), 21 weak lower bound, 25
turing machine, 426 weighing problem, 147

accept states of, 425 woofer (bass speaker), 398
as a model of computation, 421 worst cost, 17, 125
computation path of, 426 lower bound on, 140
non-deterministic, 426 worst expected cost, 127, 140

difference from parallel computer, 426
normal, 426 X of X (a game), 457
probabilistic, 436
randomized, 436

twenty questions (a game), 260 Yoyodyne Propulsion Labs, 421
two-way comparison, 99
type one and type two errors, 436 zero-knowledge proof, 263, 391, 448

dependence on one-way functions, 391
U.S. Air Force, 423 different from interactive, 448
U.S. Defense Advanced Research Projects potentially infinite, 448

Agency, 349 three types of, 408
U.S. Department of Defense, 380 used in digital signatures, 392
U.S. Federal Bureau of Investigation, 135 with bounded prover, 451
U.S. National Bureau of Standards, 379 ZFC (Zermelo-Frdnkel set theory with the
U.S. National Security Agency, 379 axiom of choice), 419
ultrasound scanner, 397 Z-PP, 437



Compared to What?

An Introduction to the Analysis of Algorithms

Gregory J. E. Rawlins, University of Indiana

A major step toward making computer science theory accessible to the wide range of scientists and
engineers who need to know the subject ... It covers a good segment of the classical material on data
structures and algorithms, but it does so in a spritely way that involves and challenges the student at every
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