The DataManager Kernel: A Guide

Benjamin Keil

December 12, 1999

Contents

1 Introduction 3
2 The Kernel package 4
2.1 The ENTITY and its collaborators. 4
2.1.1 The ENTITYPROXY 5

2.1.2 The ENTITYMANAGER « v v v v v v v i e e e e e 6

2.1.3 The EventGeneratorAssistant 6

2.1.4 The ENTITYVALUE. v 7
2.2 ThePooLclass 7
2.3 Thread Stuff L 7
2.4 The DataManager class and its loaders 7
2.5 Support for the Constraint package 7

2.5.1 The AbstractEntityConstraint. 8

2.5.2 The AbstractEventConstraint 8

3 The PassiveEntityValue package 9
3.1 The NumericalEntityValue interface 9
3.2 The HierarchicalEntityValueinterface 9
3.3 The String- and BooleanEntityValueclasses 10
3.4 The NullEntityValueclass 10

4 The ActiveEntityValue package 11
5 The Constraint Package 12
6 The DataManagerEvent Package 13

Chapter 1

Introduction

This documents explains at a moderate level some of the relationships of the
classes within the kernel. A higher-level description can be found on the Data
Manager API Design page, and should probably be read first, as many of the
concepts it lays out are assumed in this document. A lower-level understanding
of the kernel can be obtained through browsing the source code and the javadoc
files.

Throughout this document, I have followed a convention of putting concepts
in “NOUN STYLE” and actual classes in “typewriter style”. Notice that this
distinguishes between ENTITYs and objects of the Entity class (of which there
are, of course, none — Entity is an abstract class).

Chapter 2

The Kernel package

In the kernel package are the core classes that make everything that takes place
in the DataManager possible. The classes in this package deal with the creation
and management of THREADs and ENTITYs. The kernel also contains code for
the process of starting the DataManager up and shutting it down.

2.1 The ENTITY and its collaborators

ENTITYs have a dual nature. From a user’s point of view, ENTITYs are the
fundamental bricks of the data-manager, they store the data and build larger
structures with attributes, etc. From the programmer’s point of view, EN-
TITYs are responsible for persistence and event generation. Putting all of this
functionality in a single class would be both a programming headache and a
maintenance nightmare. For this reason, ENTITYs are support by a cast of
several collaborating classes.

The main collaborating classes are:

e the EntityProxy class (see Section 2.1.1), which controls access to entity
functions

o the EntityManager class (see Section 2.1.2), which provides an interface to
track relations between EntityProxys and the entities for which they are
proxying, as well as any possible relations between the entities in memory
and their stored representations

o the EventGeneratorAssistant (see Section 2.1.3) class, which takes care
of the subscription and event framework

e the EntityValue interface (see Section 2.1.4), which provides a mechanism
to store an ENTITY’s data

The Entity class itself is basically empty. It is an abstract class, and could be an
interface but for one thing: it holds the factory method, Entity.create(String
name).

2.1.1 The ENTITYPROXY

Any reference of type Entity that escapes the inner workings of the Kernel
is actually a reference of type EntityProxy. The key motivation behind the
ENTITYPROXY is that ENTITYs should be protected from malicious and/or
thread-unsafe use. The indirection to an ENTITYPROXY gives Hydrogen the (as
of yet unused) ability to check permissions for the access to the ENTITY. This
also allows Simpletons and other actors to keep entity IDENTIFIERS, with out
forcing the (possibly memory intense) back end entity to actually be in memory.

The EntityProxy class is nearly as weightless in design as the Entity class. It
contains an Identifier, which uniquely specifies the entity (whatever class is
suitable for the current back end) for which it is proxying. It uses this IDEN-
TIFIER to communicate with the EntityManager, which gives a reference to the
appropriate back end entity. The proxy then uses this reference to pass on the
method request to its intended target. This indirection is used so that the call
can be wrapped with code checking permissions, etc.

A diagram showing how what a Simpleton or other actor does to the EntityProxy
it receives from Kernel actually gets mapped to an action on a back end entity
can be seen in Figure 2.1.

Looks up - Returns should
back end delegate to
entity

Identifier

Figure 2.1: Proxies mediate between Entities and their back end counterparts

2.1.2 The ENTITYMANAGER

The job of the ENTITYMANAGER is to manage the relationships between in-
memory entities and their on-disk counterparts. These relationships can be
arbitrarily complex. The job of the EntityManager class is to create and ini-
tialize an instance of the class that implements the actual management of these
relationships. Currently there is only one such implementation:

2.1.2.1 The VerySimpleEntityManager and VerySimpleEntity classes.

The VerySimpleEntityManager is just that, a very simple entity manager. It
gains persistence through serialization. This is one of the weaker spots in the
kernel implementation currently, as it relies on a block of static code in the
EntityManager class to initialize an ObjectInputStream and load the ENTITYs
into memory, and the deprecated java.lang.System.runFinalizersOnExit to
call a finalizer method that writes them out to disk.

It keeps all the VerySimpleEntitys in memory at all times, relying on the Java
Virtual Machine and operating system to provide a reasonable caching scheme.
It contains HashTables relating EntityProxy to Identifier (which at the mo-
ment is not necessary — EntityProxys use their Identifiers as hash codes
— but is included for flexibilities sake) and Identifier to VerySimpleEntity.
These HashTables facilitate the lookup methods which the PROXYs use to get
a reference to the proper back end entity and any given time.

VerySimpleEntitys are also very simple. They reference each other (i.e., as
attributes and bases) by Identifier, as that is guaranteed to be the same
between sessions. Otherwise they are inert, as the Java serialization does all of
the persistence work.

2.1.2.2 What other ENTITYMANAGERS could do.

1. Implement a caching scheme

2. Use a database as a back end. If the pool (see Section 2.2) could use this
too, we would have a better system for doing searches

3. Support transactions for updates to several ENTITYs simultaneously

2.1.3 The EventGeneratorAssistant

The demands of the EventGenerator interface can add a lot of complexity to
a class. To avoid this unnecessary complexity, an EVENTGENERATOR should
delegate the responsibility. This is a kernel implementation to that end.

2.1.4 The ENTITYVALUE

ENTITYVALUES come in two flavors: Passive (see Chapter 3) and Active (see
Chapter 4). These two flavors are fundamentally different, as described in the
design document and the API. Each receives a formal treatment in its individual
chapter.

The EntityValue interface serves as a marker for all ENTITYVALUEs and ex-
tends the java.io.Serializable interface to facilitate easy dumping of their
data to disk. For hackers writing new ENTITYVALUESs, this means that it is
important to think about using the transient keyword wisely in their designs.

2.2 The PooOL class

The PooL is a special collection of ENTITYSs, primarily special in that it can be
searched. This search is done in terms of CONSTRAINTs (see Chapter 5), which
are a powerful filter language used in the data manager.

Currently the pool performs the search via a brute force mechanism, that is,
every ENTITY that has been added to the pool is tested against the given CON-
STRAINT. This is horrible inefficient, and could be much improved upon. If, for
example, there were a kernel interface to a database engine, the constrain could
be translated into the appropriate query and answered by the database.

2.3 Thread Stuff

to be added

2.4 The DataManager class and its loaders

to be added

2.5 Support for the Constraint package

One use of constraints is to listen to a filtered stream of events. Since the code
that the constraints use to check EVENTs or ENTITIYS is code that (normally)
would trigger events, this could lead to a disastrous infinite loop, where a CON-
STRAINT checking an EVENT could create an EVENT, that would be checked
by a CONSTRAINT, generating an EVENT and so forth into infinity. This is, of
course, not the desired behavior. For this reason there are in the kernel two
classes to deal with this:

2.5.1 The AbstractEntityConstraint

Any CONSTRAINT that extends this CONSTRAINT, will implement a describe
method. When anything using the CONSTRAINT calls the accepts, the accepts
method in AbstractEntityConstraint will temporarily disable the current
thread’s ability to trigger events, check the describes method, reset the event-
triggering state of the thread, and return the appropriate value. See figure 2.2
for a visual account of this process.

! Simpleton .) accepts() is !)
Simpleton | cals XEntityConstraint | really AEC's] AbstractEntity-
accepts() method |)
accepts() Constraint
describes() ! accepts()

Thevaueis } AECcalls '« ___________
returned to describes w/o
thecaler generating events

Figure 2.2: A flow diagram for AbstractEntityConstraint.

2.5.2 The AbstractEventConstraint

This CONSTRAINT works exactly as above, but with EventConstraints.

— e e e —

Chapter 3

The PassiveEntity Value
package

PassiveEntityValues are wrappers around other data types, such as int, double,
boolean, String, and Vector. There are a few key classes interfaces in this
package:

3.1 The NumericalEntityValue interface

This interface serves as a marker for all numerical ENTITYVALUEs. It provides
common methods for arithmetic and comparison. It extends the comparable
interface, so groups of numeric ENTITYVALUES can easily be sorted. Currently
implemented NumericalEntityValues are:

e IntegerEntityValue
e DoubleEntityValue

e NumberEntityValue (an abstract class that holds code common to the
two above)

3.2 The HierarchicalEntityValue interface

This interface serves as a marker for any kind of ENTITYVALUE that can be
described as a hierarchy, or tree, with nodes that are parents and children of
each other. A good example of this is the relationship between classes and
subclasses. For that reason we have:

e EventEntityValue

3.3 The String- and BooleanEntityValue classes

These classes are wrappers for their java.lang counterparts. They implement
the exact same APIL.

3.4 The NullEntityValue class

This class represents the null value as an ENTITYVALUE. All references to
NullEntityValues are considered equal.

10

Chapter 4

The ActiveEntityValue
package

To be added

11

Chapter 5

The Constraint Package

There are three types of CONSTRAINTS in the constraint package. There are
constraints that are specifically for defining types of ENTITYs (main grouped by
ENTITYVALUE) and there are constraints for defining certain kinds of EVENTs.
Each of these constraints is a powerful tool in and of itself, but a third type of
constraint gives the systems of CONSTRAINTS an even greater power: boolean
logic CONSTRAINTs. The purpose of each constraint is well documented in the
DataManager API.

It is important for Constraint writers to note, however, that even though the
the public API method is accepts (), the appropriate method to implement in a
new constraint is describes (). The mechanism for accepts() is implemented
in the Kernel package. See Section 2.5 for a description of how this works and
why we did it.

12

Chapter 6

The DataManagerEvent
Package

to be added

13

